diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 9d76e0d1..0afd3fa5 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -124,12 +124,9 @@ nav: - Language: - BaseLLM: "swarms/models/base_llm.md" - Overview: "swarms/models/index.md" - - Llava3: "swarms/models/llama3.md" - HuggingFaceLLM: "swarms/models/huggingface.md" - Anthropic: "swarms/models/anthropic.md" - - OpenAI: "swarms/models/openai.md" - - Mistral: "swarms/models/mistral.md" - - Mixtral: "swarms/models/mixtral.md" + - OpenAIChat: "swarms/models/openai.md" - MultiModal: - BaseMultiModalModel: "swarms/models/base_multimodal_model.md" - Fuyu: "swarms/models/fuyu.md" @@ -138,8 +135,7 @@ nav: - Kosmos: "swarms/models/kosmos.md" - Nougat: "swarms/models/nougat.md" - Dalle3: "swarms/models/dalle3.md" - - GPT4V: "swarms/models/gpt4v.md" - - DistilWhisperModel: "swarms/models/distilled_whisperx.md" + - GPT4VisionAPI: "swarms/models/gpt4v.md" - swarms.structs: - Foundational Structures: - Agent: "swarms/structs/agent.md" diff --git a/docs/requirements.txt b/docs/requirements.txt index e69de29b..c3b60fc7 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -0,0 +1,22 @@ +mkdocs +mkdocs-material +mkdocs-glightbox +mkdocs-git-authors-plugin +mkdocs-git-revision-date-plugin +mkdocs-git-committers-plugin +mkdocstrings +mike +mkdocs-jupyter +mkdocs-git-committers-plugin-2 +mkdocs-git-revision-date-localized-plugin +mkdocs-redirects +mkdocs-material-extensions +mkdocs-simple-hooks +mkdocs-awesome-pages-plugin +mkdocs-versioning +mkdocs-mermaid2-plugin +mkdocs-include-markdown-plugin +mkdocs-enumerate-headings-plugin +mkdocs-autolinks-plugin +mkdocs-minify-html-plugin +mkdocs-autolinks-plugin \ No newline at end of file diff --git a/playground/models/llama_3_hosted.py b/playground/models/llama_3_hosted.py new file mode 100644 index 00000000..8d4d7de2 --- /dev/null +++ b/playground/models/llama_3_hosted.py @@ -0,0 +1,7 @@ +from swarms import llama3Hosted + +llama3 = llama3Hosted() + +task = "What is the capital of France?" +response = llama3.run(task) +print(response) diff --git a/requirements.txt b/requirements.txt index e69de29b..a63fa959 100644 --- a/requirements.txt +++ b/requirements.txt @@ -0,0 +1,29 @@ +torch>=2.1.1,<3.0 +transformers>=4.39.0,<5.0.0 +asyncio>=3.4.3,<4.0 +langchain-community==0.0.29 +langchain-experimental==0.0.55 +backoff==2.2.1 +toml +pypdf==4.1.0 +ratelimit==2.2.1 +loguru==0.7.2 +pydantic==2.7.1 +tenacity==8.2.3 +Pillow==10.3.0 +psutil +sentry-sdk +python-dotenv +opencv-python-headless +PyYAML +docstring_parser==0.16 +black>=23.1,<25.0 +ruff>=0.0.249,<0.4.5 +types-toml>=0.10.8.1 +types-pytz>=2023.3,<2025.0 +types-chardet>=5.0.4.6 +mypy-protobuf>=3.0.0 +pytest>=8.1.1 +termcolor>=2.4.0 +pandas>=2.2.2 +fastapi>=0.110.1 \ No newline at end of file diff --git a/swarms/models/mistral.py b/swarms/models/mistral.py deleted file mode 100644 index f2d5be3c..00000000 --- a/swarms/models/mistral.py +++ /dev/null @@ -1,134 +0,0 @@ -import torch -from transformers import AutoModelForCausalLM, AutoTokenizer - -from swarms.models.base_llm import BaseLLM -from swarms.structs.message import Message - - -class Mistral(BaseLLM): - """ - Mistral is an all-new llm - - Args: - ai_name (str, optional): Name of the AI. Defaults to "Mistral". - system_prompt (str, optional): System prompt. Defaults to None. - model_name (str, optional): Model name. Defaults to "mistralai/Mistral-7B-v0.1". - device (str, optional): Device to use. Defaults to "cuda". - use_flash_attention (bool, optional): Whether to use flash attention. Defaults to False. - temperature (float, optional): Temperature. Defaults to 1.0. - max_length (int, optional): Max length. Defaults to 100. - do_sample (bool, optional): Whether to sample. Defaults to True. - - Usage: - from swarms.models import Mistral - - model = Mistral(device="cuda", use_flash_attention=True, temperature=0.7, max_length=200) - - task = "My favourite condiment is" - result = model.run(task) - print(result) - """ - - def __init__( - self, - ai_name: str = "Node Model Agent", - system_prompt: str = None, - model_name: str = "mistralai/Mistral-7B-v0.1", - device: str = "cuda", - use_flash_attention: bool = False, - temperature: float = 1.0, - max_length: int = 100, - do_sample: bool = True, - *args, - **kwargs, - ): - super().__init__(*args, **kwargs) - self.ai_name = ai_name - self.system_prompt = system_prompt - self.model_name = model_name - self.device = device - self.use_flash_attention = use_flash_attention - self.temperature = temperature - self.max_length = max_length - self.do_sample = do_sample - - # Check if the specified device is available - if not torch.cuda.is_available() and device == "cuda": - raise ValueError( - "CUDA is not available. Please choose a different" - " device." - ) - - self.history = [] - - self.model = AutoModelForCausalLM.from_pretrained( - self.model_name, *args, **kwargs - ) - self.tokenizer = AutoTokenizer.from_pretrained( - self.model_name, *args, **kwargs - ) - - self.model.to(self.device) - - def run(self, task: str, *args, **kwargs): - """Run the model on a given task.""" - - try: - model_inputs = self.tokenizer([task], return_tensors="pt").to( - self.device - ) - generated_ids = self.model.generate( - **model_inputs, - max_length=self.max_length, - do_sample=self.do_sample, - temperature=self.temperature, - max_new_tokens=self.max_length, - **kwargs, - ) - output_text = self.tokenizer.batch_decode(generated_ids)[0] - return output_text - except Exception as e: - raise ValueError(f"Error running the model: {str(e)}") - - def chat(self, msg: str = None, streaming: bool = False): - """ - Run chat - - Args: - msg (str, optional): Message to send to the agent. Defaults to None. - language (str, optional): Language to use. Defaults to None. - streaming (bool, optional): Whether to stream the response. Defaults to False. - - Returns: - str: Response from the agent - - Usage: - -------------- - agent = MultiModalAgent() - agent.chat("Hello") - - """ - - # add users message to the history - self.history.append(Message("User", msg)) - - # process msg - try: - response = self.agent.run(msg) - - # add agent's response to the history - self.history.append(Message("Agent", response)) - - # if streaming is = True - if streaming: - return self._stream_response(response) - else: - response - - except Exception as error: - error_message = f"Error processing message: {str(error)}" - - # add error to history - self.history.append(Message("Agent", error_message)) - - return error_message diff --git a/swarms/models/mixtral.py b/swarms/models/mixtral.py deleted file mode 100644 index 05edb84b..00000000 --- a/swarms/models/mixtral.py +++ /dev/null @@ -1,75 +0,0 @@ -from typing import Optional - -from transformers import AutoModelForCausalLM, AutoTokenizer - -from swarms.models.base_llm import BaseLLM - - -class Mixtral(BaseLLM): - """Mixtral model. - - Args: - model_name (str): The name or path of the pre-trained Mixtral model. - max_new_tokens (int): The maximum number of new tokens to generate. - *args: Variable length argument list. - - - Examples: - >>> from swarms.models import Mixtral - >>> mixtral = Mixtral() - >>> mixtral.run("Test task") - 'Generated text' - """ - - def __init__( - self, - model_name: str = "mistralai/Mixtral-8x7B-v0.1", - max_new_tokens: int = 500, - *args, - **kwargs, - ): - """ - Initializes a Mixtral model. - - Args: - model_name (str): The name or path of the pre-trained Mixtral model. - max_new_tokens (int): The maximum number of new tokens to generate. - *args: Variable length argument list. - **kwargs: Arbitrary keyword arguments. - """ - super().__init__(*args, **kwargs) - self.model_name = model_name - self.max_new_tokens = max_new_tokens - self.tokenizer = AutoTokenizer.from_pretrained(model_name) - self.model = AutoModelForCausalLM.from_pretrained( - model_name, *args, **kwargs - ) - - def run(self, task: Optional[str] = None, **kwargs): - """ - Generates text based on the given task. - - Args: - task (str, optional): The task or prompt for text generation. - - Returns: - str: The generated text. - """ - try: - inputs = self.tokenizer(task, return_tensors="pt") - - outputs = self.model.generate( - **inputs, - max_new_tokens=self.max_new_tokens, - **kwargs, - ) - - out = self.tokenizer.decode( - outputs[0], - skip_special_tokens=True, - ) - - return out - except Exception as error: - print(f"There is an error: {error} in Mixtral model.") - raise error diff --git a/swarms/schemas/__init__.py b/swarms/schemas/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/swarms/structs/plan.py b/swarms/schemas/plan.py similarity index 100% rename from swarms/structs/plan.py rename to swarms/schemas/plan.py diff --git a/swarms/structs/schemas.py b/swarms/schemas/schemas.py similarity index 100% rename from swarms/structs/schemas.py rename to swarms/schemas/schemas.py diff --git a/swarms/structs/step.py b/swarms/schemas/step.py similarity index 100% rename from swarms/structs/step.py rename to swarms/schemas/step.py diff --git a/swarms/structs/block_wrapper.py b/swarms/structs/block_wrapper.py deleted file mode 100644 index a6811b8f..00000000 --- a/swarms/structs/block_wrapper.py +++ /dev/null @@ -1,38 +0,0 @@ -import logging -from functools import wraps -from typing import Any, Callable - -logging.basicConfig(level=logging.INFO) -logger = logging.getLogger(__name__) - - -def block( - function: Callable[..., Any], - device: str = None, - verbose: bool = False, -) -> Callable[..., Any]: - """ - A decorator that transforms a function into a block. - - Args: - function (Callable[..., Any]): The function to transform. - - Returns: - Callable[..., Any]: The transformed function. - """ - - @wraps(function) - def wrapper(*args, **kwargs): - # Here you can add code to execute the function on various hardwares - # For now, we'll just call the function normally - try: - return function(*args, **kwargs) - except Exception as error: - logger.error(f"Error in {function.__name__}: {error}") - raise error - - # Set the wrapper function's name and docstring to those of the original function - wrapper.__name__ = function.__name__ - wrapper.__doc__ = function.__doc__ - - return wrapper diff --git a/swarms/structs/blocks_dict.py b/swarms/structs/blocks_dict.py deleted file mode 100644 index bfdb103e..00000000 --- a/swarms/structs/blocks_dict.py +++ /dev/null @@ -1,116 +0,0 @@ -from typing import Any, Dict, Optional - -from swarms.structs.base_structure import BaseStructure - - -class BlocksDict(BaseStructure): - """ - A class representing a dictionary of blocks. - - Args: - name (str): The name of the blocks dictionary. - description (str): The description of the blocks dictionary. - blocks (Dict[str, Any]): The dictionary of blocks. - parent (Optional[Any], optional): The parent of the blocks dictionary. Defaults to None. - **kwargs: Additional keyword arguments. - - Attributes: - parent (Optional[Any]): The parent of the blocks dictionary. - blocks (Dict[str, Any]): The dictionary of blocks. - - Methods: - add(key: str, block: Any): Add a block to the dictionary. - remove(key: str): Remove a block from the dictionary. - get(key: str): Get a block from the dictionary. - update(key: str, block: Any): Update a block in the dictionary. - keys(): Get a list of keys in the dictionary. - values(): Get a list of values in the dictionary. - items(): Get a list of key-value pairs in the dictionary. - clear(): Clear all blocks from the dictionary. - """ - - def __init__( - self, - name: str, - description: str, - blocks: Dict[str, Any], - parent: Optional[Any] = None, - **kwargs, - ): - super().__init__(name=name, description=description, **kwargs) - self.parent = parent - self.blocks = blocks - - def add(self, key: str, block: Any): - """ - Add a block to the dictionary. - - Args: - key (str): The key of the block. - block (Any): The block to be added. - """ - self.blocks[key] = block - - def remove(self, key: str): - """ - Remove a block from the dictionary. - - Args: - key (str): The key of the block to be removed. - """ - del self.blocks[key] - - def get(self, key: str): - """ - Get a block from the dictionary. - - Args: - key (str): The key of the block to be retrieved. - - Returns: - Any: The retrieved block. - """ - return self.blocks.get(key) - - def update(self, key: str, block: Any): - """ - Update a block in the dictionary. - - Args: - key (str): The key of the block to be updated. - block (Any): The updated block. - """ - self.blocks[key] = block - - def keys(self): - """ - Get a list of keys in the dictionary. - - Returns: - List[str]: A list of keys. - """ - return list(self.blocks.keys()) - - def values(self): - """ - Get a list of values in the dictionary. - - Returns: - List[Any]: A list of values. - """ - return list(self.blocks.values()) - - def items(self): - """ - Get a list of key-value pairs in the dictionary. - - Returns: - List[Tuple[str, Any]]: A list of key-value pairs. - """ - return list(self.blocks.items()) - - def clear(self): - """ - Clear all blocks from the dictionary. - """ - self.blocks.clear() diff --git a/swarms/structs/blocks_list.py b/swarms/structs/blocks_list.py deleted file mode 100644 index 79dbdb89..00000000 --- a/swarms/structs/blocks_list.py +++ /dev/null @@ -1,161 +0,0 @@ -from typing import Any, List, Optional - -from swarms.structs.base_structure import BaseStructure - - -class BlocksList(BaseStructure): - """ - A class representing a list of blocks. - - Args: - name (str): The name of the blocks list. - description (str): The description of the blocks list. - blocks (List[Any]): The list of blocks. - parent (Optional[Any], optional): The parent of the blocks list. Defaults to None. - **kwargs: Additional keyword arguments. - - Attributes: - parent (Optional[Any]): The parent of the blocks list. - blocks (List[Any]): The list of blocks. - - Methods: - add(block: Any): Add a block to the list. - remove(block: Any): Remove a block from the list. - update(block: Any): Update a block in the list. - get(index: int): Get a block at the specified index. - get_all(): Get all blocks in the list. - get_by_name(name: str): Get blocks by name. - get_by_type(type: str): Get blocks by type. - get_by_id(id: str): Get blocks by ID. - get_by_parent(parent: str): Get blocks by parent. - get_by_parent_id(parent_id: str): Get blocks by parent ID. - get_by_parent_name(parent_name: str): Get blocks by parent name. - get_by_parent_type(parent_type: str): Get blocks by parent type. - get_by_parent_description(parent_description: str): Get blocks by parent description. - - - Examples: - >>> from swarms.structs.block import Block - >>> from swarms.structs.blockslist import BlocksList - >>> block = Block("block", "A block") - >>> blockslist = BlocksList("blockslist", "A list of blocks", [block]) - >>> blockslist - - """ - - def __init__( - self, - name: str, - description: str, - blocks: List[Any], - parent: Optional[Any] = None, - **kwargs, - ): - super().__init__(name=name, description=description, **kwargs) - self.name = name - self.description = description - self.blocks = blocks - self.parent = parent - - def add(self, block: Any): - self.blocks.append(block) - - def remove(self, block: Any): - self.blocks.remove(block) - - def update(self, block: Any): - self.blocks[self.blocks.index(block)] = block - - def get(self, index: int): - return self.blocks[index] - - def get_all(self): - return self.blocks - - def run_block(self, block: Any, task: str, *args, **kwargs): - """Run the block for the specified task. - - Args: - task (str): The task to be performed by the block. - *args: Variable length argument list. - **kwargs: Arbitrary keyword arguments. - - Returns: - The output of the block. - - Raises: - Exception: If an error occurs during the execution of the block. - """ - try: - return block.run(task, *args, **kwargs) - except Exception as error: - print(f"[Error] [Block] {error}") - raise error - - def get_by_name(self, name: str): - return [block for block in self.blocks if block.name == name] - - def get_by_type(self, type: str): - return [block for block in self.blocks if block.type == type] - - def get_by_id(self, id: str): - return [block for block in self.blocks if block.id == id] - - def get_by_parent(self, parent: str): - return [block for block in self.blocks if block.parent == parent] - - def get_by_parent_id(self, parent_id: str): - return [ - block for block in self.blocks if block.parent_id == parent_id - ] - - def get_by_parent_name(self, parent_name: str): - return [ - block - for block in self.blocks - if block.parent_name == parent_name - ] - - def get_by_parent_type(self, parent_type: str): - return [ - block - for block in self.blocks - if block.parent_type == parent_type - ] - - def get_by_parent_description(self, parent_description: str): - return [ - block - for block in self.blocks - if block.parent_description == parent_description - ] - - def __len__(self): - return len(self.blocks) - - def __getitem__(self, index): - return self.blocks[index] - - def __setitem__(self, index, value): - self.blocks[index] = value - - def __delitem__(self, index): - del self.blocks[index] - - def __iter__(self): - return iter(self.blocks) - - def __reversed__(self): - return reversed(self.blocks) - - def __contains__(self, item): - return item in self.blocks - - def __str__(self): - return f"{self.name}({self.blocks})" - - def __repr__(self): - return f"{self.name}({self.blocks})" - - def __eq__(self, other): - return self.blocks == other.blocks diff --git a/swarms/structs/concurrent_workflow.py b/swarms/structs/concurrent_workflow.py index 2893fb9e..231170ca 100644 --- a/swarms/structs/concurrent_workflow.py +++ b/swarms/structs/concurrent_workflow.py @@ -2,13 +2,14 @@ import concurrent.futures from dataclasses import dataclass, field from typing import Callable, Dict, List, Optional -from swarms.structs.base_structure import BaseStructure from swarms.structs.task import Task from swarms.utils.logger import logger +from swarms.structs.agent import Agent +from swarms.structs.base_workflow import BaseWorkflow @dataclass -class ConcurrentWorkflow(BaseStructure): +class ConcurrentWorkflow(BaseWorkflow): """ ConcurrentWorkflow class for running a set of tasks concurrently using N number of autonomous agents. @@ -35,13 +36,19 @@ class ConcurrentWorkflow(BaseStructure): max_loops: int = 1 max_workers: int = 5 autosave: bool = False + agents: List[Agent] = None saved_state_filepath: Optional[str] = "runs/concurrent_workflow.json" print_results: bool = False return_results: bool = False use_processes: bool = False stopping_condition: Optional[Callable] = None - def add(self, task: Task = None, tasks: List[Task] = None): + def add( + self, + task: Task = None, + agent: Agent = None, + tasks: List[Task] = None, + ): """Adds a task to the workflow. Args: @@ -61,11 +68,15 @@ class ConcurrentWorkflow(BaseStructure): logger.info( f"Added task {task} to ConcurrentWorkflow." ) + + if agent: + self.agents.append(agent) + logger.info(f"Added agent {agent} to ConcurrentWorkflow.") except Exception as error: logger.warning(f"[ERROR][ConcurrentWorkflow] {error}") raise error - def run(self, *args, **kwargs): + def run(self, task: str = None, *args, **kwargs): """ Executes the tasks in parallel using a ThreadPoolExecutor. @@ -76,8 +87,8 @@ class ConcurrentWorkflow(BaseStructure): Returns: List[Any]: A list of the results of each task, if return_results is True. Otherwise, returns None. """ - loop_count = 0 - while loop_count < self.max_loops: + loop = 0 + while loop < self.max_loops: with concurrent.futures.ThreadPoolExecutor( max_workers=self.max_workers ) as executor: @@ -100,7 +111,7 @@ class ConcurrentWorkflow(BaseStructure): f"Task {task} generated an exception: {e}" ) - loop_count += 1 + loop += 1 if self.stopping_condition and self.stopping_condition( results ): diff --git a/swarms/structs/document.py b/swarms/structs/document.py deleted file mode 100644 index 7b99721f..00000000 --- a/swarms/structs/document.py +++ /dev/null @@ -1,93 +0,0 @@ -from __future__ import annotations - -import asyncio -from abc import ABC, abstractmethod -from functools import partial -from typing import Any, Literal, Sequence - -from langchain.load.serializable import Serializable -from pydantic import Field - - -class Document(Serializable): - """Class for storing a piece of text and associated metadata.""" - - page_content: str - """String text.""" - metadata: dict = Field(default_factory=dict) - """Arbitrary metadata about the page content (e.g., source, relationships to other - documents, etc.). - """ - type: Literal["Document"] = "Document" - - @classmethod - def is_lc_serializable(cls) -> bool: - """Return whether this class is serializable.""" - return True - - -class BaseDocumentTransformer(ABC): - """Abstract base class for document transformation systems. - - A document transformation system takes a sequence of Documents and returns a - sequence of transformed Documents. - - Example: - .. code-block:: python - - class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): - embeddings: Embeddings - similarity_fn: Callable = cosine_similarity - similarity_threshold: float = 0.95 - - class Config: - arbitrary_types_allowed = True - - def transform_documents( - self, documents: Sequence[Document], **kwargs: Any - ) -> Sequence[Document]: - stateful_documents = get_stateful_documents(documents) - embedded_documents = _get_embeddings_from_stateful_docs( - self.embeddings, stateful_documents - ) - included_idxs = _filter_similar_embeddings( - embedded_documents, self.similarity_fn, self.similarity_threshold - ) - return [stateful_documents[i] for i in sorted(included_idxs)] - - async def atransform_documents( - self, documents: Sequence[Document], **kwargs: Any - ) -> Sequence[Document]: - raise NotImplementedError - - """ # noqa: E501 - - @abstractmethod - def transform_documents( - self, documents: Sequence[Document], **kwargs: Any - ) -> Sequence[Document]: - """Transform a list of documents. - - Args: - documents: A sequence of Documents to be transformed. - - Returns: - A list of transformed Documents. - """ - - async def atransform_documents( - self, documents: Sequence[Document], **kwargs: Any - ) -> Sequence[Document]: - """Asynchronously transform a list of documents. - - Args: - documents: A sequence of Documents to be transformed. - - Returns: - A list of transformed Documents. - """ - return await asyncio.get_running_loop().run_in_executor( - None, - partial(self.transform_documents, **kwargs), - documents, - ) diff --git a/swarms/structs/long_swarm.py b/swarms/structs/long_swarm.py deleted file mode 100644 index e24a3e08..00000000 --- a/swarms/structs/long_swarm.py +++ /dev/null @@ -1,151 +0,0 @@ -from typing import List - -from swarms.structs.agent import Agent -from swarms.utils.parse_code import extract_code_from_markdown - - -class LongContextSwarmLeader: - """ - Represents a leader in a long context swarm. - - Args: - - llm (str): The language model to use for the agent. - - agents (List[Agent]): The agents in the swarm. - - prompt_template_json (str): The SOP template in JSON format. - - return_parsed (bool): Whether to return the parsed output. - - """ - - def __init__( - self, - llm, - agents: List[Agent] = None, - prompt_template_json: str = None, - return_parsed: bool = False, - *args, - **kwargs, - ): - super().__init__(*args, **kwargs) - self.llm = llm - self.agents = agents - self.prompt_template_json = prompt_template_json - self.return_parsed = return_parsed - - # Create an instance of the Agent class - self.agent = Agent( - llm=llm, - system_prompt=None, - sop=self.prompt_template_json, - *args, - **kwargs, - ) - - def prep_schema(self, task: str, *args, **kwargs): - """ - Returns a formatted string containing the metadata of all agents in the swarm. - - Parameters: - - task (str): The description of the task. - - Returns: - - prompt (str): The formatted string containing the agent metadata. - """ - prompt = f""" - - You need to recruit a team of members to solve a - task. Select the appropriate member based on the - task description: - - # Task Description - {task} - - # Members - - Your output must follow this JSON schema below in markdown format: - {{ - "agent_id": "string", - "agent_name": "string", - "agent_description": "string" - }} - - """ - for agent in self.agents: - prompt += ( - f"Member Name: {agent.ai_name}\nMember ID:" - f" {agent.id}\nMember Description:" - f" {agent.description}\n\n" - ) - - return prompt - - def prep_schema_second(self, task_description: str, task: str): - prompt = f""" - You are the leader of a team of {len(self.agents)} - members. Your team will need to collaborate to - solve a task. The rule is: - - 1. Only you know the task description and task - objective; the other members do not. - 2. But they will receive different documents that - may contain answers, and you need to send them - an instruction to query their document. - 3. Your instruction need to include your - understanding of the task and what you need them - to focus on. If necessary, your instructions can - explicitly include the task objective. - 4. Finally, you need to complete the task based on - the query results they return. - - # Task Description: - {task_description} - - # Task Objective: - {task} - - # Generate Instruction for Members: - Now, you need to generate an instruction for all - team members. You can ask them to answer a - certain question, or to extract information related - to the task, based on their respective documents. - Your output must following the JSON - format: {{"type": "instruction", "content": - "your_instruction_content"}} - - """ - return prompt - - def run(self, task: str, *args, **kwargs): - """ - Executes the specified task using the agent's run method. - - Args: - task: The task to be executed. - *args: Additional positional arguments for the task. - **kwargs: Additional keyword arguments for the task. - - Returns: - The result of the task execution. - """ - task = self.prep_schema(task) - out = self.agent.run(task, *args, **kwargs) - - if self.return_parsed: - out = extract_code_from_markdown(out) - - return out - - -# class LongContextSwarm(BaseSwarm): -# def __init__( -# self, -# agents: List[Agent], -# Leader: Agent, -# team_loops: int, -# *args, -# **kwargs, -# ): -# super().__init__() -# self.agents = agents -# self.leader = Leader -# self.team_loops = team_loops -# self.chunks = len(agents) diff --git a/swarms/structs/message.py b/swarms/structs/message.py index de9d13d6..03904e2d 100644 --- a/swarms/structs/message.py +++ b/swarms/structs/message.py @@ -1,8 +1,10 @@ import datetime from typing import Dict, Optional +from pydantic import BaseModel -class Message: + +class Message(BaseModel): """ Represents a message with timestamp and optional metadata. @@ -16,16 +18,10 @@ class Message: print(mes) """ - def __init__( - self, - sender: str, - content: str, - metadata: Optional[Dict[str, str]] = None, - ): - self.timestamp: datetime.datetime = datetime.datetime.now() - self.sender: str = sender - self.content: str = content - self.metadata: Dict[str, str] = metadata or {} + timestamp: datetime = datetime.now() + sender: str + content: str + metadata: Optional[Dict[str, str]] = {} def __repr__(self) -> str: """ diff --git a/swarms/structs/model_parallizer.py b/swarms/structs/model_parallizer.py deleted file mode 100644 index 76e2fe55..00000000 --- a/swarms/structs/model_parallizer.py +++ /dev/null @@ -1,181 +0,0 @@ -import asyncio -import logging -from concurrent.futures import ThreadPoolExecutor, as_completed -from typing import Callable, List - -from termcolor import colored - -# Configure logging -logging.basicConfig(level=logging.INFO) -logger = logging.getLogger(__name__) - - -class ModelParallelizer: - """ - ModelParallelizer, a class that parallelizes the execution of a task - across multiple language models. It is a wrapper around the - LanguageModel class. - - Args: - llms (List[Callable]): A list of language models. - retry_attempts (int): The number of retry attempts. - max_loops (int): The number of iterations to run the task. - - Attributes: - llms (List[Callable]): A list of language models. - retry_attempts (int): The number of retry attempts. - max_loops (int): The number of iterations to run the task. - last_responses (List[str]): The last responses from the language - models. - task_history (List[str]): The task history. - - Examples: - >>> from swarms.structs import ModelParallelizer - >>> from swarms.llms import OpenAIChat - >>> llms = [ - ... OpenAIChat( - ... temperature=0.5, - ... openai_api_key="OPENAI_API_KEY", - ... ), - ... OpenAIChat( - ... temperature=0.5, - ... openai_api_key="OPENAI_API_KEY", - ... ), - ... ] - >>> mp = ModelParallelizer(llms) - >>> mp.run("Generate a 10,000 word blog on health and wellness.") - ['Generate a 10,000 word blog on health and wellness.', 'Generate a 10,000 word blog on health and wellness.'] - - """ - - def __init__( - self, - llms: List[Callable] = None, - retry_attempts: int = 3, - max_loops: int = None, - *args, - **kwargs, - ): - self.llms = llms - self.retry_attempts = retry_attempts - self.max_loops = max_loops - self.last_responses = None - self.task_history = [] - - def run(self, task: str): - """Run the task string""" - try: - for i in range(self.max_loops): - with ThreadPoolExecutor() as executor: - responses = executor.map( - lambda llm: llm(task), self.llms - ) - return list(responses) - except Exception as error: - logger.error( - f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]" - ) - - def run_all(self, task): - """Run the task on all LLMs""" - responses = [] - for llm in self.llms: - responses.append(llm(task)) - return responses - - # New Features - def save_responses_to_file(self, filename): - """Save responses to file""" - with open(filename, "w") as file: - table = [ - [f"LLM {i+1}", response] - for i, response in enumerate(self.last_responses) - ] - file.write(table) - - @classmethod - def load_llms_from_file(cls, filename): - """Load llms from file""" - with open(filename) as file: - llms = [line.strip() for line in file.readlines()] - return cls(llms) - - def get_task_history(self): - """Get Task history""" - return self.task_history - - def summary(self): - """Summary""" - print("Tasks History:") - for i, task in enumerate(self.task_history): - print(f"{i + 1}. {task}") - print("\nLast Responses:") - table = [ - [f"LLM {i+1}", response] - for i, response in enumerate(self.last_responses) - ] - print( - colored( - table, - "cyan", - ) - ) - - async def arun(self, task: str): - """Asynchronous run the task string""" - loop = asyncio.get_event_loop() - futures = [ - loop.run_in_executor(None, lambda llm: llm(task), llm) - for llm in self.llms - ] - for response in await asyncio.gather(*futures): - print(response) - - def concurrent_run(self, task: str) -> List[str]: - """Synchronously run the task on all llms and collect responses""" - try: - with ThreadPoolExecutor() as executor: - future_to_llm = { - executor.submit(llm, task): llm for llm in self.llms - } - responses = [] - for future in as_completed(future_to_llm): - try: - responses.append(future.result()) - except Exception as error: - print( - f"{future_to_llm[future]} generated an" - f" exception: {error}" - ) - self.last_responses = responses - self.task_history.append(task) - return responses - except Exception as error: - logger.error( - f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]" - ) - raise error - - def add_llm(self, llm: Callable): - """Add an llm to the god mode""" - logger.info(f"[INFO][ModelParallelizer] Adding LLM {llm}") - - try: - self.llms.append(llm) - except Exception as error: - logger.error( - f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]" - ) - raise error - - def remove_llm(self, llm: Callable): - """Remove an llm from the god mode""" - logger.info(f"[INFO][ModelParallelizer] Removing LLM {llm}") - - try: - self.llms.remove(llm) - except Exception as error: - logger.error( - f"[ERROR][ModelParallelizer] [ROOT CAUSE] [{error}]" - ) - raise error diff --git a/swarms/structs/rearrange.py b/swarms/structs/rearrange.py index 47c1d21c..4a63292d 100644 --- a/swarms/structs/rearrange.py +++ b/swarms/structs/rearrange.py @@ -3,7 +3,6 @@ from typing import Callable, Dict, List, Optional from swarms.memory.base_vectordb import BaseVectorDatabase from swarms.structs.agent import Agent from swarms.structs.base_swarm import BaseSwarm -from swarms.structs.omni_agent_types import Agent from swarms.utils.loguru_logger import logger diff --git a/tests/models/test_hf.py b/tests/models/test_hf.py index 804cd780..c6e880f9 100644 --- a/tests/models/test_hf.py +++ b/tests/models/test_hf.py @@ -7,8 +7,6 @@ import torch from swarms.models.huggingface import HuggingfaceLLM - - # Fixture for the class instance @pytest.fixture def llm_instance(): diff --git a/tests/models/test_llama_function_caller.py b/tests/models/test_llama_function_caller.py deleted file mode 100644 index b6086c7a..00000000 --- a/tests/models/test_llama_function_caller.py +++ /dev/null @@ -1,141 +0,0 @@ -import pytest - -from swarms.models.llama_function_caller import LlamaFunctionCaller - - -# Define fixtures if needed -@pytest.fixture -def llama_caller(): - # Initialize the LlamaFunctionCaller with a sample model - return LlamaFunctionCaller() - - -# Basic test for model loading -def test_llama_model_loading(llama_caller): - assert llama_caller.model is not None - assert llama_caller.tokenizer is not None - - -# Test adding and calling custom functions -def test_llama_custom_function(llama_caller): - def sample_function(arg1, arg2): - return f"Sample function called with args: {arg1}, {arg2}" - - llama_caller.add_func( - name="sample_function", - function=sample_function, - description="Sample custom function", - arguments=[ - { - "name": "arg1", - "type": "string", - "description": "Argument 1", - }, - { - "name": "arg2", - "type": "string", - "description": "Argument 2", - }, - ], - ) - - result = llama_caller.call_function( - "sample_function", arg1="arg1_value", arg2="arg2_value" - ) - assert ( - result - == "Sample function called with args: arg1_value, arg2_value" - ) - - -# Test streaming user prompts -def test_llama_streaming(llama_caller): - user_prompt = "Tell me about the tallest mountain in the world." - response = llama_caller(user_prompt) - assert isinstance(response, str) - assert len(response) > 0 - - -# Test custom function not found -def test_llama_custom_function_not_found(llama_caller): - with pytest.raises(ValueError): - llama_caller.call_function("non_existent_function") - - -# Test invalid arguments for custom function -def test_llama_custom_function_invalid_arguments(llama_caller): - def sample_function(arg1, arg2): - return f"Sample function called with args: {arg1}, {arg2}" - - llama_caller.add_func( - name="sample_function", - function=sample_function, - description="Sample custom function", - arguments=[ - { - "name": "arg1", - "type": "string", - "description": "Argument 1", - }, - { - "name": "arg2", - "type": "string", - "description": "Argument 2", - }, - ], - ) - - with pytest.raises(TypeError): - llama_caller.call_function("sample_function", arg1="arg1_value") - - -# Test streaming with custom runtime -def test_llama_custom_runtime(): - llama_caller = LlamaFunctionCaller( - model_id="Your-Model-ID", - cache_dir="Your-Cache-Directory", - runtime="cuda", - ) - user_prompt = "Tell me about the tallest mountain in the world." - response = llama_caller(user_prompt) - assert isinstance(response, str) - assert len(response) > 0 - - -# Test caching functionality -def test_llama_cache(): - llama_caller = LlamaFunctionCaller( - model_id="Your-Model-ID", - cache_dir="Your-Cache-Directory", - runtime="cuda", - ) - - # Perform a request to populate the cache - user_prompt = "Tell me about the tallest mountain in the world." - response = llama_caller(user_prompt) - - # Check if the response is retrieved from the cache - llama_caller.model.from_cache = True - response_from_cache = llama_caller(user_prompt) - assert response == response_from_cache - - -# Test response length within max_tokens limit -def test_llama_response_length(): - llama_caller = LlamaFunctionCaller( - model_id="Your-Model-ID", - cache_dir="Your-Cache-Directory", - runtime="cuda", - ) - - # Generate a long prompt - long_prompt = "A " + "test " * 100 # Approximately 500 tokens - - # Ensure the response does not exceed max_tokens - response = llama_caller(long_prompt) - assert len(response.split()) <= 500 - - -# Add more test cases as needed to cover different aspects of your code - -# ... diff --git a/tests/models/test_mistral.py b/tests/models/test_mistral.py deleted file mode 100644 index 432c02c1..00000000 --- a/tests/models/test_mistral.py +++ /dev/null @@ -1,46 +0,0 @@ -from unittest.mock import patch - -from swarms.models.mistral import Mistral - - -def test_mistral_initialization(): - mistral = Mistral(device="cpu") - assert isinstance(mistral, Mistral) - assert mistral.ai_name == "Node Model Agent" - assert mistral.system_prompt is None - assert mistral.model_name == "mistralai/Mistral-7B-v0.1" - assert mistral.device == "cpu" - assert mistral.use_flash_attention is False - assert mistral.temperature == 1.0 - assert mistral.max_length == 100 - assert mistral.history == [] - - -@patch("your_module.AutoModelForCausalLM.from_pretrained") -@patch("your_module.AutoTokenizer.from_pretrained") -def test_mistral_load_model(mock_tokenizer, mock_model): - mistral = Mistral(device="cpu") - mistral.load_model() - mock_model.assert_called_once() - mock_tokenizer.assert_called_once() - - -@patch("your_module.Mistral.load_model") -def test_mistral_run(mock_load_model): - mistral = Mistral(device="cpu") - mistral.run("What's the weather in miami") - mock_load_model.assert_called_once() - - -@patch("your_module.Mistral.run") -def test_mistral_chat(mock_run): - mistral = Mistral(device="cpu") - mistral.chat("What's the weather in miami") - mock_run.assert_called_once() - - -def test_mistral__stream_response(): - mistral = Mistral(device="cpu") - response = "It's sunny in Miami." - tokens = list(mistral._stream_response(response)) - assert tokens == ["It's", "sunny", "in", "Miami."] diff --git a/tests/models/test_mixtral.py b/tests/models/test_mixtral.py deleted file mode 100644 index 3a47c87c..00000000 --- a/tests/models/test_mixtral.py +++ /dev/null @@ -1,51 +0,0 @@ -from unittest.mock import MagicMock, patch - -import pytest - -from swarms.models.mixtral import Mixtral - - -@patch("swarms.models.mixtral.AutoTokenizer") -@patch("swarms.models.mixtral.AutoModelForCausalLM") -def test_mixtral_init(mock_model, mock_tokenizer): - mixtral = Mixtral() - mock_tokenizer.from_pretrained.assert_called_once() - mock_model.from_pretrained.assert_called_once() - assert mixtral.model_name == "mistralai/Mixtral-8x7B-v0.1" - assert mixtral.max_new_tokens == 20 - - -@patch("swarms.models.mixtral.AutoTokenizer") -@patch("swarms.models.mixtral.AutoModelForCausalLM") -def test_mixtral_run(mock_model, mock_tokenizer): - mixtral = Mixtral() - mock_tokenizer_instance = MagicMock() - mock_model_instance = MagicMock() - mock_tokenizer.from_pretrained.return_value = mock_tokenizer_instance - mock_model.from_pretrained.return_value = mock_model_instance - mock_tokenizer_instance.return_tensors = "pt" - mock_model_instance.generate.return_value = [101, 102, 103] - mock_tokenizer_instance.decode.return_value = "Generated text" - result = mixtral.run("Test task") - assert result == "Generated text" - mock_tokenizer_instance.assert_called_once_with( - "Test task", return_tensors="pt" - ) - mock_model_instance.generate.assert_called_once() - mock_tokenizer_instance.decode.assert_called_once_with( - [101, 102, 103], skip_special_tokens=True - ) - - -@patch("swarms.models.mixtral.AutoTokenizer") -@patch("swarms.models.mixtral.AutoModelForCausalLM") -def test_mixtral_run_error(mock_model, mock_tokenizer): - mixtral = Mixtral() - mock_tokenizer_instance = MagicMock() - mock_model_instance = MagicMock() - mock_tokenizer.from_pretrained.return_value = mock_tokenizer_instance - mock_model.from_pretrained.return_value = mock_model_instance - mock_tokenizer_instance.return_tensors = "pt" - mock_model_instance.generate.side_effect = Exception("Test error") - with pytest.raises(Exception, match="Test error"): - mixtral.run("Test task") diff --git a/tests/models/test_mpt7b.py b/tests/models/test_mpt7b.py deleted file mode 100644 index 0db9784a..00000000 --- a/tests/models/test_mpt7b.py +++ /dev/null @@ -1,86 +0,0 @@ -import pytest -from transformers import AutoModelForCausalLM, AutoTokenizer - -from swarms.models.mpt import MPT7B - - -def test_mpt7b_init(): - mpt = MPT7B( - "mosaicml/mpt-7b-storywriter", - "EleutherAI/gpt-neox-20b", - max_tokens=150, - ) - - assert isinstance(mpt, MPT7B) - assert mpt.model_name == "mosaicml/mpt-7b-storywriter" - assert mpt.tokenizer_name == "EleutherAI/gpt-neox-20b" - assert isinstance(mpt.tokenizer, AutoTokenizer) - assert isinstance(mpt.model, AutoModelForCausalLM) - assert mpt.max_tokens == 150 - - -def test_mpt7b_run(): - mpt = MPT7B( - "mosaicml/mpt-7b-storywriter", - "EleutherAI/gpt-neox-20b", - max_tokens=150, - ) - output = mpt.run( - "generate", "Once upon a time in a land far, far away..." - ) - - assert isinstance(output, str) - assert output.startswith("Once upon a time in a land far, far away...") - - -def test_mpt7b_run_invalid_task(): - mpt = MPT7B( - "mosaicml/mpt-7b-storywriter", - "EleutherAI/gpt-neox-20b", - max_tokens=150, - ) - - with pytest.raises(ValueError): - mpt.run( - "invalid_task", - "Once upon a time in a land far, far away...", - ) - - -def test_mpt7b_generate(): - mpt = MPT7B( - "mosaicml/mpt-7b-storywriter", - "EleutherAI/gpt-neox-20b", - max_tokens=150, - ) - output = mpt.generate("Once upon a time in a land far, far away...") - - assert isinstance(output, str) - assert output.startswith("Once upon a time in a land far, far away...") - - -def test_mpt7b_batch_generate(): - mpt = MPT7B( - "mosaicml/mpt-7b-storywriter", - "EleutherAI/gpt-neox-20b", - max_tokens=150, - ) - prompts = ["In the deep jungles,", "At the heart of the city,"] - outputs = mpt.batch_generate(prompts, temperature=0.7) - - assert isinstance(outputs, list) - assert len(outputs) == len(prompts) - for output in outputs: - assert isinstance(output, str) - - -def test_mpt7b_unfreeze_model(): - mpt = MPT7B( - "mosaicml/mpt-7b-storywriter", - "EleutherAI/gpt-neox-20b", - max_tokens=150, - ) - mpt.unfreeze_model() - - for param in mpt.model.parameters(): - assert param.requires_grad