From a59a39c43f1614b078fed69902e09a52c78ce19d Mon Sep 17 00:00:00 2001 From: Kye Date: Sat, 27 Apr 2024 17:17:24 -0400 Subject: [PATCH] [CLEANUP] --- docs/diy_your_own_agent.md | 6 +- docs/mkdocs.yml | 4 +- docs/swarms/agents/toolagent.md | 2 +- docs/swarms/index.md | 4 +- docs/swarms/memory/diy_memory.md | 44 ++--- docs/swarms/models/base_llm.md | 22 +-- docs/swarms/models/custom_model.md | 28 +-- hiearchical_swarm.py | 176 ++++++++++++++++++ playground/agents/simple_agent_example.py | 13 -- playground/agents/swarm_protocol.py | 10 +- playground/notest.txt | 98 ---------- playground/structs/custom_model_with_agent.py | 30 +-- playground/structs/groupchat_example.py | 48 ----- playground/structs/hierarchical_swarm.py | 18 -- playground/structs/message_pool.py | 9 +- playground/structs/multi_process_workflow.py | 2 +- playground/tools/function_to_openai_exec.py | 39 ++++ swarms/agents/simple_agent.py | 6 +- swarms/agents/tool_agent.py | 2 +- swarms/memory/__init__.py | 4 +- swarms/memory/base_vectordb.py | 2 +- swarms/memory/chroma_db.py | 4 +- swarms/memory/lanchain_chroma.py | 4 +- swarms/memory/pg.py | 4 +- swarms/memory/pinecone.py | 4 +- swarms/memory/qdrant.py | 4 +- swarms/memory/sqlite.py | 4 +- swarms/memory/weaviate_db.py | 4 +- swarms/models/__init__.py | 4 +- swarms/models/base_llm.py | 2 +- swarms/models/base_tts.py | 6 +- swarms/models/base_ttv.py | 4 +- swarms/models/fire_function.py | 4 +- swarms/models/huggingface.py | 4 +- swarms/models/huggingface_pipeline.py | 6 +- swarms/models/llama_function_caller.py | 4 +- swarms/models/mistral.py | 4 +- swarms/models/mixtral.py | 4 +- swarms/models/open_router.py | 4 +- swarms/models/openai_tts.py | 4 +- swarms/models/together.py | 4 +- swarms/structs/__init__.py | 2 + swarms/structs/agent.py | 23 +-- swarms/structs/meta_system_prompt.py | 6 +- swarms/structs/omni_agent_types.py | 4 +- swarms/structs/sequential_workflow.py | 33 +--- swarms/tools/__init__.py | 40 ++-- swarms/tools/code_executor.py | 97 ---------- swarms/tools/execution_sandbox.py | 112 ----------- swarms/tools/function_calling_utils.py | 40 ---- .../tools/{format_tools.py => json_former.py} | 4 +- swarms/tools/openai_tool_creator_decorator.py | 81 ++++++++ swarms/tools/py_func_to_openai_func_str.py | 2 +- swarms/tools/pydantic_to_json.py | 43 +++-- 54 files changed, 497 insertions(+), 639 deletions(-) create mode 100644 hiearchical_swarm.py delete mode 100644 playground/notest.txt delete mode 100644 playground/structs/groupchat_example.py delete mode 100644 playground/structs/hierarchical_swarm.py create mode 100644 playground/tools/function_to_openai_exec.py delete mode 100644 swarms/tools/code_executor.py delete mode 100644 swarms/tools/execution_sandbox.py delete mode 100644 swarms/tools/function_calling_utils.py rename swarms/tools/{format_tools.py => json_former.py} (99%) create mode 100644 swarms/tools/openai_tool_creator_decorator.py diff --git a/docs/diy_your_own_agent.md b/docs/diy_your_own_agent.md index 1c8b3eb9..d75c1667 100644 --- a/docs/diy_your_own_agent.md +++ b/docs/diy_your_own_agent.md @@ -152,11 +152,11 @@ The Agent class provides built-in support for long-term memory, allowing agents ```python -from swarms.memory import AbstractVectorDatabase +from swarms.memory import BaseVectorDatabase from swarms import Agent -class CustomMemory(AbstractVectorDatabase): +class CustomMemory(BaseVectorDatabase):     def __init__(self, *args, **kwargs): @@ -196,7 +196,7 @@ class MyCustomAgent(Agent): ``` -In the example above, we define a new `CustomMemory` class that inherits from the `AbstractVectorDatabase` class provided by the Agent class framework. Within the `CustomMemory` class, you can implement specialized memory management logic, such as custom indexing, retrieval, and storage mechanisms. +In the example above, we define a new `CustomMemory` class that inherits from the `BaseVectorDatabase` class provided by the Agent class framework. Within the `CustomMemory` class, you can implement specialized memory management logic, such as custom indexing, retrieval, and storage mechanisms. Next, within the `MyCustomAgent` class, we initialize an instance of the `CustomMemory` class and assign it to the `self.long_term_memory` attribute. This custom memory instance can then be utilized within the overridden `run` method, where you can query the memory and process the results as needed. diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 5df477dd..ce3413ba 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -167,10 +167,10 @@ nav: - groupchatmanager: "swarms/structs/groupchatmanager.md" - MajorityVoting: "swarms/structs/majorityvoting.md" - swarms.memory: - - Building Custom Vector Memory Databases with the AbstractVectorDatabase Class: "swarms/memory/diy_memory.md" + - Building Custom Vector Memory Databases with the BaseVectorDatabase Class: "swarms/memory/diy_memory.md" - ShortTermMemory: "swarms/memory/short_term_memory.md" - Guides: - - Building Custom Vector Memory Databases with the AbstractVectorDatabase Class: "swarms/memory/diy_memory.md" + - Building Custom Vector Memory Databases with the BaseVectorDatabase Class: "swarms/memory/diy_memory.md" - How to Create A Custom Language Model: "swarms/models/custom_model.md" - Deploying Azure OpenAI in Production, A Comprehensive Guide: "swarms/models/azure_openai.md" - DIY Build Your Own Agent: "diy_your_own_agent.md" diff --git a/docs/swarms/agents/toolagent.md b/docs/swarms/agents/toolagent.md index 35a31f99..c358c8c9 100644 --- a/docs/swarms/agents/toolagent.md +++ b/docs/swarms/agents/toolagent.md @@ -12,7 +12,7 @@ The primary objective of the `ToolAgent` class is to amplify the efficiency of d The `ToolAgent` class has the following definition: ```python -class ToolAgent(AbstractLLM): +class ToolAgent(BaseLLM): def __init__( self, name: str, diff --git a/docs/swarms/index.md b/docs/swarms/index.md index 304e8261..c3d45d86 100644 --- a/docs/swarms/index.md +++ b/docs/swarms/index.md @@ -1073,9 +1073,9 @@ agent.run(task=task, img=img) ### Swarms Compliant Model Interface ```python -from swarms import AbstractLLM +from swarms import BaseLLM -class vLLMLM(AbstractLLM): +class vLLMLM(BaseLLM): def __init__(self, model_name='default_model', tensor_parallel_size=1, *args, **kwargs): super().__init__(*args, **kwargs) self.model_name = model_name diff --git a/docs/swarms/memory/diy_memory.md b/docs/swarms/memory/diy_memory.md index 3c550a29..2bcb056e 100644 --- a/docs/swarms/memory/diy_memory.md +++ b/docs/swarms/memory/diy_memory.md @@ -1,20 +1,20 @@ -# Building Custom Vector Memory Databases with the AbstractVectorDatabase Class +# Building Custom Vector Memory Databases with the BaseVectorDatabase Class In the age of large language models (LLMs) and AI-powered applications, efficient memory management has become a crucial component. Vector databases, which store and retrieve data in high-dimensional vector spaces, have emerged as powerful tools for handling the vast amounts of data generated and consumed by AI systems. However, integrating vector databases into your applications can be a daunting task, requiring in-depth knowledge of their underlying architectures and APIs. -Enter the `AbstractVectorDatabase` class, a powerful abstraction layer designed to simplify the process of creating and integrating custom vector memory databases into your AI applications. By inheriting from this class, developers can build tailored vector database solutions that seamlessly integrate with their existing systems, enabling efficient storage, retrieval, and manipulation of high-dimensional data. +Enter the `BaseVectorDatabase` class, a powerful abstraction layer designed to simplify the process of creating and integrating custom vector memory databases into your AI applications. By inheriting from this class, developers can build tailored vector database solutions that seamlessly integrate with their existing systems, enabling efficient storage, retrieval, and manipulation of high-dimensional data. -In this comprehensive guide, we'll explore the `AbstractVectorDatabase` class in detail, covering its core functionality and diving deep into the process of creating custom vector memory databases using popular solutions like PostgreSQL, Pinecone, Chroma, FAISS, and more. Whether you're a seasoned AI developer or just starting to explore the world of vector databases, this guide will provide you with the knowledge and tools necessary to build robust, scalable, and efficient memory solutions for your AI applications. +In this comprehensive guide, we'll explore the `BaseVectorDatabase` class in detail, covering its core functionality and diving deep into the process of creating custom vector memory databases using popular solutions like PostgreSQL, Pinecone, Chroma, FAISS, and more. Whether you're a seasoned AI developer or just starting to explore the world of vector databases, this guide will provide you with the knowledge and tools necessary to build robust, scalable, and efficient memory solutions for your AI applications. -## Understanding the AbstractVectorDatabase Class +## Understanding the BaseVectorDatabase Class -Before we dive into the implementation details, let's take a closer look at the `AbstractVectorDatabase` class and its core functionality. +Before we dive into the implementation details, let's take a closer look at the `BaseVectorDatabase` class and its core functionality. -The `AbstractVectorDatabase` class is an abstract base class that defines the interface for interacting with a vector database. It serves as a blueprint for creating concrete implementations of vector databases, ensuring a consistent and standardized approach to database operations across different systems. +The `BaseVectorDatabase` class is an abstract base class that defines the interface for interacting with a vector database. It serves as a blueprint for creating concrete implementations of vector databases, ensuring a consistent and standardized approach to database operations across different systems. The class provides a set of abstract methods that define the essential functionality required for working with vector databases, such as connecting to the database, executing queries, and performing CRUD (Create, Read, Update, Delete) operations. -Here's a breakdown of the abstract methods defined in the `AbstractVectorDatabase` class: +Here's a breakdown of the abstract methods defined in the `BaseVectorDatabase` class: 1\. `connect()`: This method establishes a connection to the vector database. @@ -34,22 +34,22 @@ Here's a breakdown of the abstract methods defined in the `AbstractVectorDatabas 9\. `delete(message)`: This method deletes a record from the vector database. -By inheriting from the `AbstractVectorDatabase` class and implementing these abstract methods, developers can create concrete vector database implementations tailored to their specific needs and requirements. +By inheriting from the `BaseVectorDatabase` class and implementing these abstract methods, developers can create concrete vector database implementations tailored to their specific needs and requirements. ## Creating a Custom Vector Memory Database -Now that we have a solid understanding of the `AbstractVectorDatabase` class, let's dive into the process of creating a custom vector memory database by inheriting from this class. Throughout this guide, we'll explore various vector database solutions, including PostgreSQL, Pinecone, Chroma, FAISS, and more, showcasing how to integrate them seamlessly into your AI applications. +Now that we have a solid understanding of the `BaseVectorDatabase` class, let's dive into the process of creating a custom vector memory database by inheriting from this class. Throughout this guide, we'll explore various vector database solutions, including PostgreSQL, Pinecone, Chroma, FAISS, and more, showcasing how to integrate them seamlessly into your AI applications. -### Step 1: Inherit from the AbstractVectorDatabase Class +### Step 1: Inherit from the BaseVectorDatabase Class -The first step in creating a custom vector memory database is to inherit from the `AbstractVectorDatabase` class. This will provide your custom implementation with the foundational structure and interface defined by the abstract class. +The first step in creating a custom vector memory database is to inherit from the `BaseVectorDatabase` class. This will provide your custom implementation with the foundational structure and interface defined by the abstract class. ```python from abc import ABC, abstractmethod -from swarms import AbstractVectorDatabase +from swarms import BaseVectorDatabase -class MyCustomVectorDatabase(AbstractVectorDatabase): +class MyCustomVectorDatabase(BaseVectorDatabase):     def __init__(self, *args, **kwargs): @@ -59,17 +59,17 @@ class MyCustomVectorDatabase(AbstractVectorDatabase): ``` -In the example above, we define a new class `MyCustomVectorDatabase` that inherits from the `AbstractVectorDatabase` class. Within the `__init__` method, you can add any custom initialization logic specific to your vector database implementation. +In the example above, we define a new class `MyCustomVectorDatabase` that inherits from the `BaseVectorDatabase` class. Within the `__init__` method, you can add any custom initialization logic specific to your vector database implementation. ### Step 2: Implement the Abstract Methods -The next step is to implement the abstract methods defined in the `AbstractVectorDatabase` class. These methods provide the core functionality for interacting with your vector database, such as connecting, querying, and performing CRUD operations. +The next step is to implement the abstract methods defined in the `BaseVectorDatabase` class. These methods provide the core functionality for interacting with your vector database, such as connecting, querying, and performing CRUD operations. ```python -from swarms import AbstractVectorDatabase +from swarms import BaseVectorDatabase -class MyCustomVectorDatabase(AbstractVectorDatabase): +class MyCustomVectorDatabase(BaseVectorDatabase):     def __init__(self, *args, **kwargs): @@ -146,7 +146,7 @@ PostgreSQL is a powerful open-source relational database management system that ```python import psycopg2 -from swarms import AbstractVectorDatabase +from swarms import BaseVectorDatabase class PostgreSQLVectorDatabase(MyCustomVectorDatabase): @@ -209,7 +209,7 @@ Pinecone is a managed vector database service that provides efficient storage, r ```python import pinecone -from swarms import AbstractVectorDatabase +from swarms import BaseVectorDatabase class PineconeVectorDatabase(MyCustomVectorDatabase): @@ -263,7 +263,7 @@ Chroma is an open-source vector database library that provides efficient storage ```python from chromadb.client import Client -from swarms import AbstractVectorDatabase +from swarms import BaseVectorDatabase class ChromaVectorDatabase(MyCustomVectorDatabase): @@ -467,7 +467,7 @@ By following these best practices and considering potential challenges, you can # Conclusion -In this comprehensive guide, we've explored the `AbstractVectorDatabase` class and its role in simplifying the process of creating custom vector memory databases. We've covered the core functionality of the class, walked through the step-by-step process of inheriting and extending its functionality, and provided examples of integrating popular vector database solutions like PostgreSQL, Pinecone, Chroma, and FAISS. +In this comprehensive guide, we've explored the `BaseVectorDatabase` class and its role in simplifying the process of creating custom vector memory databases. We've covered the core functionality of the class, walked through the step-by-step process of inheriting and extending its functionality, and provided examples of integrating popular vector database solutions like PostgreSQL, Pinecone, Chroma, and FAISS. Building custom vector memory databases empowers developers to create tailored and efficient data management solutions that seamlessly integrate with their AI applications. By leveraging the power of vector databases, you can unlock new possibilities in data storage, retrieval, and manipulation, enabling your AI systems to handle vast amounts of high-dimensional data with ease. @@ -475,4 +475,4 @@ Remember, the journey of building custom vector memory databases is an iterative As you embark on this journey, keep in mind the importance of scalability, performance, data quality, security, and compliance. Foster an environment of collaboration, knowledge sharing, and community engagement to ensure that your custom vector memory databases are robust, reliable, and capable of meeting the ever-evolving demands of the AI landscape. -So, dive in, leverage the power of the `AbstractVectorDatabase` class, and create the custom vector memory databases that will drive the future of AI-powered applications. \ No newline at end of file +So, dive in, leverage the power of the `BaseVectorDatabase` class, and create the custom vector memory databases that will drive the future of AI-powered applications. \ No newline at end of file diff --git a/docs/swarms/models/base_llm.md b/docs/swarms/models/base_llm.md index 4fc7457a..0c678165 100644 --- a/docs/swarms/models/base_llm.md +++ b/docs/swarms/models/base_llm.md @@ -19,13 +19,13 @@ ## 1. Introduction -The Language Model Interface (`AbstractLLM`) is a flexible and extensible framework for working with various language models. This documentation provides a comprehensive guide to the interface, its attributes, methods, and usage examples. Whether you're using a pre-trained language model or building your own, this interface can help streamline the process of text generation, chatbots, summarization, and more. +The Language Model Interface (`BaseLLM`) is a flexible and extensible framework for working with various language models. This documentation provides a comprehensive guide to the interface, its attributes, methods, and usage examples. Whether you're using a pre-trained language model or building your own, this interface can help streamline the process of text generation, chatbots, summarization, and more. ## 2. Abstract Language Model ### Initialization -The `AbstractLLM` class provides a common interface for language models. It can be initialized with various parameters to customize model behavior. Here are the initialization parameters: +The `BaseLLM` class provides a common interface for language models. It can be initialized with various parameters to customize model behavior. Here are the initialization parameters: | Parameter | Description | Default Value | |------------------------|-------------------------------------------------------------------------------------------------|---------------| @@ -82,7 +82,7 @@ The `AbstractLLM` class provides a common interface for language models. It can ### Methods -The `AbstractLLM` class defines several methods for working with language models: +The `BaseLLM` class defines several methods for working with language models: - `run(task: Optional[str] = None, *args, **kwargs) -> str`: Generate text using the language model. This method is abstract and must be implemented by subclasses. @@ -156,18 +156,18 @@ get_generation_time() -> float`: Get the time taken for text generation. ## 3. Implementation -The `AbstractLLM` class serves as the base for implementing specific language models. Subclasses of `AbstractLLM` should implement the `run` method to define how text is generated for a given task. This design allows flexibility in integrating different language models while maintaining a common interface. +The `BaseLLM` class serves as the base for implementing specific language models. Subclasses of `BaseLLM` should implement the `run` method to define how text is generated for a given task. This design allows flexibility in integrating different language models while maintaining a common interface. ## 4. Usage Examples -To demonstrate how to use the `AbstractLLM` interface, let's create an example using a hypothetical language model. We'll initialize an instance of the model and generate text for a simple task. +To demonstrate how to use the `BaseLLM` interface, let's create an example using a hypothetical language model. We'll initialize an instance of the model and generate text for a simple task. ```python -# Import the AbstractLLM class -from swarms.models import AbstractLLM +# Import the BaseLLM class +from swarms.models import BaseLLM # Create an instance of the language model -language_model = AbstractLLM( +language_model = BaseLLM( model_name="my_language_model", max_tokens=50, temperature=0.7, @@ -188,7 +188,7 @@ In this example, we've created an instance of our hypothetical language model, c ## 5. Additional Features -The `AbstractLLM` interface provides additional features for customization and control: +The `BaseLLM` interface provides additional features for customization and control: - `batch_run`: Generate text for a batch of tasks efficiently. - `arun` and `abatch_run`: Asynchronous versions of `run` and `batch_run` for concurrent text generation. @@ -199,7 +199,7 @@ These features enhance the flexibility and utility of the interface in various a ## 6. Performance Metrics -The `AbstractLLM` class offers methods for tracking performance metrics: +The `BaseLLM` class offers methods for tracking performance metrics: - `_tokens_per_second`: Calculate tokens generated per second. - `_num_tokens`: Calculate the number of tokens in a text. @@ -224,4 +224,4 @@ The `track_resource_utilization` method is a placeholder for tracking and report ## 9. Conclusion -The Language Model Interface (`AbstractLLM`) is a versatile framework for working with language models. Whether you're using pre-trained models or developing your own, this interface provides a consistent and extensible foundation. By following the provided guidelines and examples, you can integrate and customize language models for various natural language processing tasks. \ No newline at end of file +The Language Model Interface (`BaseLLM`) is a versatile framework for working with language models. Whether you're using pre-trained models or developing your own, this interface provides a consistent and extensible foundation. By following the provided guidelines and examples, you can integrate and customize language models for various natural language processing tasks. \ No newline at end of file diff --git a/docs/swarms/models/custom_model.md b/docs/swarms/models/custom_model.md index 105dd3d7..624b5372 100644 --- a/docs/swarms/models/custom_model.md +++ b/docs/swarms/models/custom_model.md @@ -1,6 +1,6 @@ # How to Create A Custom Language Model -When working with advanced language models, there might come a time when you need a custom solution tailored to your specific needs. Inheriting from an `AbstractLLM` in a Python framework allows developers to create custom language model classes with ease. This developer guide will take you through the process step by step. +When working with advanced language models, there might come a time when you need a custom solution tailored to your specific needs. Inheriting from an `BaseLLM` in a Python framework allows developers to create custom language model classes with ease. This developer guide will take you through the process step by step. ### Prerequisites @@ -9,22 +9,22 @@ Before you begin, ensure that you have: - A working knowledge of Python programming. - Basic understanding of object-oriented programming (OOP) in Python. - Familiarity with language models and natural language processing (NLP). -- The appropriate Python framework installed, with access to `AbstractLLM`. +- The appropriate Python framework installed, with access to `BaseLLM`. ### Step-by-Step Guide -#### Step 1: Understand `AbstractLLM` +#### Step 1: Understand `BaseLLM` -The `AbstractLLM` is an abstract base class that defines a set of methods and properties which your custom language model (LLM) should implement. Abstract classes in Python are not designed to be instantiated directly but are meant to be subclasses. +The `BaseLLM` is an abstract base class that defines a set of methods and properties which your custom language model (LLM) should implement. Abstract classes in Python are not designed to be instantiated directly but are meant to be subclasses. #### Step 2: Create a New Class -Start by defining a new class that inherits from `AbstractLLM`. This class will implement the required methods defined in the abstract base class. +Start by defining a new class that inherits from `BaseLLM`. This class will implement the required methods defined in the abstract base class. ```python -from swarms import AbstractLLM +from swarms import BaseLLM -class vLLMLM(AbstractLLM): +class vLLMLM(BaseLLM): pass ``` @@ -33,7 +33,7 @@ class vLLMLM(AbstractLLM): Implement the `__init__` method to initialize your custom LLM. You'll want to initialize the base class as well and define any additional parameters for your model. ```python -class vLLMLM(AbstractLLM): +class vLLMLM(BaseLLM): def __init__(self, model_name='default_model', tensor_parallel_size=1, *args, **kwargs): super().__init__(*args, **kwargs) self.model_name = model_name @@ -43,10 +43,10 @@ class vLLMLM(AbstractLLM): #### Step 4: Implement Required Methods -Implement the `run` method or any other abstract methods required by `AbstractLLM`. This is where you define how your model processes input and returns output. +Implement the `run` method or any other abstract methods required by `BaseLLM`. This is where you define how your model processes input and returns output. ```python -class vLLMLM(AbstractLLM): +class vLLMLM(BaseLLM): # ... existing code ... def run(self, task, *args, **kwargs): @@ -73,9 +73,9 @@ Depending on the requirements, you might need to integrate additional components Write comprehensive docstrings for your class and its methods. Good documentation is crucial for maintaining the code and for other developers who might use your model. ```python -class vLLMLM(AbstractLLM): +class vLLMLM(BaseLLM): """ - A custom language model class that extends AbstractLLM. + A custom language model class that extends BaseLLM. ... more detailed docstring ... """ @@ -96,7 +96,7 @@ Use a version control system like Git to track changes to your model. This makes ### Conclusion -By following this guide, you should now have a custom model that extends the `AbstractLLM`. Remember that the key to a successful custom LLM is understanding the base functionalities, implementing necessary changes, and testing thoroughly. Keep iterating and improving based on feedback and performance metrics. +By following this guide, you should now have a custom model that extends the `BaseLLM`. Remember that the key to a successful custom LLM is understanding the base functionalities, implementing necessary changes, and testing thoroughly. Keep iterating and improving based on feedback and performance metrics. ### Further Reading @@ -104,4 +104,4 @@ By following this guide, you should now have a custom model that extends the `Ab - In-depth tutorials on object-oriented programming in Python. - Advanced NLP techniques and optimization strategies for language models. -This guide provides the fundamental steps to create custom models using `AbstractLLM`. For detailed implementation and advanced customization, it's essential to dive deeper into the specific functionalities and capabilities of the language model framework you are using. \ No newline at end of file +This guide provides the fundamental steps to create custom models using `BaseLLM`. For detailed implementation and advanced customization, it's essential to dive deeper into the specific functionalities and capabilities of the language model framework you are using. \ No newline at end of file diff --git a/hiearchical_swarm.py b/hiearchical_swarm.py new file mode 100644 index 00000000..fb6a189b --- /dev/null +++ b/hiearchical_swarm.py @@ -0,0 +1,176 @@ +from typing import List + +from pydantic import BaseModel, Field + +from swarms.structs.agent import Agent +from swarms.structs.base_swarm import BaseSwarm +from swarms.utils.loguru_logger import logger +from swarms.models.popular_llms import Anthropic, OpenAIChat +from swarms.models.base_llm import BaseLLM +from swarms.memory.base_vectordb import BaseVectorDatabase + +boss_sys_prompt = ( + "You're the Swarm Orchestrator, like a project manager of a" + " bustling hive. When a task arises, you tap into your network of" + " worker agents who are ready to jump into action. Whether it's" + " organizing data, handling logistics, or crunching numbers, you" + " delegate tasks strategically to maximize efficiency. Picture" + " yourself as the conductor of a well-oiled machine," + " orchestrating the workflow seamlessly to achieve optimal" + " results with your team of dedicated worker agents." +) + + +class AgentSchema(BaseModel): + name: str = Field( + ..., + title="Name of the agent", + description="Name of the agent", + ) + system_prompt: str = ( + Field( + ..., + title="System prompt for the agent", + description="System prompt for the agent", + ), + ) + rules: str = Field( + ..., + title="Rules", + description="Rules for the agent", + ) + llm: str = Field( + ..., + title="Language model", + description="Language model for the agent: `GPT4` or `Claude", + ) + + # tools: List[ToolSchema] = Field( + # ..., + # title="Tools available to the agent", + # description="Either `browser` or `terminal`", + # ) + # task: str = Field( + # ..., + # title="Task assigned to the agent", + # description="Task assigned to the agent", + # ) + # TODO: Add more fields here such as the agent's language model, tools, etc. + + +class HassSchema(BaseModel): + plan: str = Field( + ..., + title="Plan to solve the input problem", + description="List of steps to solve the problem", + ) + agents: List[AgentSchema] = Field( + ..., + title="List of agents to use for the problem", + description="List of agents to use for the problem", + ) + # Rules for the agents + rules: str = Field( + ..., + title="Rules for the agents", + description="Rules for the agents", + ) + + +class HiearchicalSwarm(BaseSwarm): + def __init__( + self, + director: Agent = None, + subordinates: List[Agent] = [], + workers: List[Agent] = [], + director_sys_prompt: str = boss_sys_prompt, + director_name: str = "Swarm Orchestrator", + director_agent_creation_schema: BaseModel = HassSchema, + director_llm: BaseLLM = Anthropic, + communication_protocol: BaseVectorDatabase = None, + *args, + **kwargs, + ): + super().__init__(*args, **kwargs) + self.director = director + self.subordinates = subordinates + self.workers = workers + self.director_sys_prompt = director_sys_prompt + self.director_name = director_name + self.director_agent_creation_schema = ( + director_agent_creation_schema + ) + self.director_llm = director_llm + self.communication_protocol = communication_protocol + + def create_director(self, *args, **kwargs): + """ + Create the director agent based on the provided schema. + """ + name = self.director_name + system_prompt = self.director_sys_prompt + director_llm = self.director_llm + + if director_llm == Anthropic: + Anthropic(*args, **kwargs) + elif director_llm == OpenAIChat: + OpenAIChat(*args, **kwargs) + + logger.info( + f"Creating Director Agent: {name} with system prompt:" + f" {system_prompt}" + ) + + director = Agent( + agent_name=name, + system_prompt=system_prompt, + llm=director_llm, + max_loops=1, + autosave=True, + dashboard=False, + verbose=True, + stopping_token="", + ) + + return director + + def create_worker_agents( + agents: List[AgentSchema], + ) -> List[Agent]: + """ + Create and initialize agents based on the provided AgentSchema objects. + + Args: + agents (List[AgentSchema]): A list of AgentSchema objects containing agent information. + + Returns: + List[Agent]: The initialized Agent objects. + + """ + agent_list = [] + for agent in agents: + name = agent.name + system_prompt = agent.system_prompt + + logger.info( + f"Creating agent: {name} with system prompt:" + f" {system_prompt}" + ) + + out = Agent( + agent_name=name, + system_prompt=system_prompt, + # llm=Anthropic( + # anthropic_api_key=os.getenv("ANTHROPIC_API_KEY") + # ), + max_loops=1, + autosave=True, + dashboard=False, + verbose=True, + stopping_token="", + ) + + # network.add_agent(out) + agent_list.append(out) + + return agent_list diff --git a/playground/agents/simple_agent_example.py b/playground/agents/simple_agent_example.py index b79b8f59..bc09a5b6 100644 --- a/playground/agents/simple_agent_example.py +++ b/playground/agents/simple_agent_example.py @@ -5,10 +5,7 @@ from dotenv import load_dotenv from swarms import ( Conversation, OpenAIChat, - detect_markdown, - extract_code_from_markdown, ) -from swarms.tools.code_executor import CodeExecutor conv = Conversation( autosave=False, @@ -46,16 +43,6 @@ def interactive_conversation(llm, iters: int = 10): f"Assistant: {out}", ) - # Code Interpreter - if detect_markdown(out): - code = extract_code_from_markdown(out) - if code: - print(f"Code: {code}") - executor = CodeExecutor() - out = executor.run(code) - conv.add("assistant", out) - # print(f"Assistant: {out}") - conv.display_conversation() # conv.export_conversation("conversation.txt") diff --git a/playground/agents/swarm_protocol.py b/playground/agents/swarm_protocol.py index f6c8db83..a29b2c5f 100644 --- a/playground/agents/swarm_protocol.py +++ b/playground/agents/swarm_protocol.py @@ -1,7 +1,7 @@ from dataclasses import dataclass from typing import List -from swarms import JSON, AbstractLLM, AbstractVectorDatabase, Agent +from swarms import JSON, BaseLLM, BaseVectorDatabase, Agent @dataclass @@ -10,13 +10,13 @@ class YourAgent(Agent): Represents an agent in the swarm protocol. Attributes: - llm (AbstractLLM): The low-level module for the agent. - long_term_memory (AbstractVectorDatabase): The long-term memory for the agent. + llm (BaseLLM): The low-level module for the agent. + long_term_memory (BaseVectorDatabase): The long-term memory for the agent. tool_schema (List[JSON]): The schema for the tools used by the agent. """ - llm: AbstractLLM - long_term_memory: AbstractVectorDatabase + llm: BaseLLM + long_term_memory: BaseVectorDatabase tool_schema: JSON tool_schemas: List[JSON] diff --git a/playground/notest.txt b/playground/notest.txt deleted file mode 100644 index 62894bab..00000000 --- a/playground/notest.txt +++ /dev/null @@ -1,98 +0,0 @@ -swarms - -pip install swarms -swarms is the most pythonic way of writing cognitive systems. Leveraging pydantic models as output schemas combined with langchain in the backend allows for a seamless integration of llms into your apps. It utilizes OpenAI Functions or LlamaCpp grammars (json-schema-mode) for efficient structured output. In the backend it compiles the swarms syntax into langchain runnables so you can easily invoke, stream or batch process your pipelines. - -Open in GitHub Codespaces - -from pydantic import BaseModel, Field -from swarms import Anthropic -from swarms import Agent - - -# Initialize the schema for the person's information -class Schema(BaseModel): - name: str = Field(..., title="Name of the person") - agent: int = Field(..., title="Age of the person") - is_student: bool = Field(..., title="Whether the person is a student") - courses: list[str] = Field( - ..., title="List of courses the person is taking" - ) - -# Convert the schema to a JSON string -tool_schema = Schema( - name="Tool Name", - agent=1, - is_student=True, - courses=["Course1", "Course2"], -) - -# Define the task to generate a person's information -task = "Generate a person's information based on the following schema:" - -# Initialize the agent -agent = Agent( - agent_name="Person Information Generator", - system_prompt=( - "Generate a person's information based on the following schema:" - ), - # Set the tool schema to the JSON string -- this is the key difference - tool_schema=tool_schema, - llm=Anthropic(), - max_loops=3, - autosave=True, - dashboard=False, - streaming_on=True, - verbose=True, - interactive=True, - # Set the output type to the tool schema which is a BaseModel - output_type=tool_schema, # or dict, or str - metadata_output_type="json", - # List of schemas that the agent can handle - list_tool_schemas = [tool_schema], - function_calling_format_type = "OpenAI", - function_calling_type = "json" # or soon yaml -) - -# Run the agent to generate the person's information -generated_data = agent.run(task) - -# Print the generated data -print(f"Generated data: {generated_data}") - - - - - - -Features -🐍 pythonic -🔀 easy swap between openai or local models -🔄 dynamic output types (pydantic models, or primitives) -👁️ vision llm support -🧠 langchain_core as backend -📝 jinja templating for prompts -🏗️ reliable structured output -🔁 auto retry parsing -🔧 langsmith support -🔄 sync, async, streaming, parallel, fallbacks -📦 gguf download from huggingface -✅ type hints for all functions and mypy support -🗣️ chat router component -🧩 composable with langchain LCEL -🛠️ easy error handling -🚦 enums and literal support -📐 custom parsing types -Documentation -Checkout the docs here 👈 - -Also highly recommend to try and run the examples in the ./examples folder. - -Contribution -You want to contribute? Thanks, that's great! For more information checkout the Contributing Guide. Please run the dev setup to get started: - -git clone https://github.com/kyegomez/swarms.git && cd swarms - -./dev_setup.sh -About -⛓️ build cognitive systems, pythonic diff --git a/playground/structs/custom_model_with_agent.py b/playground/structs/custom_model_with_agent.py index 8849fc41..c0511bec 100644 --- a/playground/structs/custom_model_with_agent.py +++ b/playground/structs/custom_model_with_agent.py @@ -1,29 +1,31 @@ from swarms import Agent -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM -class ExampleLLM(AbstractLLM): - def __init__(): +# Define a custom LLM class +class ExampleLLM(BaseLLM): + def __init__(self): pass def run(self, task: str, *args, **kwargs): + # Your LLM logic here pass -## Initialize the workflow +# Initialize the workflow agent = Agent( - llm=ExampleLLM(), - max_loops="auto", - autosave=True, - dashboard=False, - streaming_on=True, - verbose=True, - stopping_token="", - interactive=True, + llm=ExampleLLM(), # Instantiate the ExampleLLM class + max_loops="auto", # Set the maximum number of loops to "auto" + autosave=True, # Enable autosave feature + dashboard=False, # Disable the dashboard + streaming_on=True, # Enable streaming + verbose=True, # Enable verbose mode + stopping_token="", # Set the stopping token to "" + interactive=True, # Enable interactive mode ) # Run the workflow on a task agent( - "Generate a transcript for a youtube video on what swarms are!" - " Output a token when done." + "Generate a transcript for a youtube video on what swarms are!" # Specify the task + " Output a token when done." # Specify the stopping condition ) diff --git a/playground/structs/groupchat_example.py b/playground/structs/groupchat_example.py deleted file mode 100644 index c55aea69..00000000 --- a/playground/structs/groupchat_example.py +++ /dev/null @@ -1,48 +0,0 @@ -from swarms import Agent, OpenAI -from swarms.structs.groupchat import GroupChat, GroupChatManager - -api_key = "" - -llm = OpenAI( - openai_api_key=api_key, - temperature=0.5, - max_tokens=3000, -) - -# Initialize the agent -flow1 = Agent( - llm=llm, - max_loops=1, - system_message="YOU ARE SILLY, YOU OFFER NOTHING OF VALUE", - name="silly", - dashboard=True, -) -flow2 = Agent( - llm=llm, - max_loops=1, - system_message="YOU ARE VERY SMART AND ANSWER RIDDLES", - name="detective", - dashboard=True, -) -flow3 = Agent( - llm=llm, - max_loops=1, - system_message="YOU MAKE RIDDLES", - name="riddler", - dashboard=True, -) -manager = Agent( - llm=llm, - max_loops=1, - system_message="YOU ARE A GROUP CHAT MANAGER", - name="manager", - dashboard=True, -) - - -# Example usage: -agents = [flow1, flow2, flow3] - -group_chat = GroupChat(agents=agents, messages=[], max_round=10) -chat_manager = GroupChatManager(groupchat=group_chat, selector=manager) -chat_history = chat_manager("Write me a riddle") diff --git a/playground/structs/hierarchical_swarm.py b/playground/structs/hierarchical_swarm.py deleted file mode 100644 index 04bea216..00000000 --- a/playground/structs/hierarchical_swarm.py +++ /dev/null @@ -1,18 +0,0 @@ -import os -from swarms import OpenAIChat, Agent -from dotenv import load_dotenv - - -# Load environment variables -load_dotenv() - -# Create a chat instance -llm = OpenAIChat( - api_key=os.getenv("OPENAI_API_KEY"), -) - -# Create an agent -agent = Agent( - agent_name="GPT-3", - llm=llm, -) diff --git a/playground/structs/message_pool.py b/playground/structs/message_pool.py index c19e844d..7a7dc459 100644 --- a/playground/structs/message_pool.py +++ b/playground/structs/message_pool.py @@ -1,6 +1,4 @@ -from swarms.structs.message_pool import MessagePool -from swarms import Agent, OpenAIChat -from swarms.memory.chroma_db import ChromaDB +from swarms import Agent, OpenAIChat, MessagePool # Agents @@ -13,7 +11,6 @@ agent1 = Agent( ), agent_name="Steve", agent_description="A Minecraft player agent", - long_term_memory=ChromaDB(), max_steps=1, ) @@ -26,7 +23,6 @@ agent2 = Agent( ), agent_name="Bob", agent_description="A Minecraft builder agent", - long_term_memory=ChromaDB(), max_steps=1, ) @@ -39,7 +35,6 @@ agent3 = Agent( ), agent_name="Alex", agent_description="A Minecraft explorer agent", - long_term_memory=ChromaDB(), max_steps=1, ) @@ -52,7 +47,6 @@ agent4 = Agent( ), agent_name="Ender", agent_description="A Minecraft adventurer agent", - long_term_memory=ChromaDB(), max_steps=1, ) @@ -65,7 +59,6 @@ moderator = Agent( ), agent_name="Admin", agent_description="A Minecraft moderator agent", - long_term_memory=ChromaDB(), max_steps=1, ) diff --git a/playground/structs/multi_process_workflow.py b/playground/structs/multi_process_workflow.py index 3c7f39c0..e22ec9c0 100644 --- a/playground/structs/multi_process_workflow.py +++ b/playground/structs/multi_process_workflow.py @@ -58,4 +58,4 @@ workflow = MultiProcessWorkflow( # Run the workflow -results = workflow.run("What") +results = workflow.run("What is the best way to market a new product?") diff --git a/playground/tools/function_to_openai_exec.py b/playground/tools/function_to_openai_exec.py new file mode 100644 index 00000000..039946bd --- /dev/null +++ b/playground/tools/function_to_openai_exec.py @@ -0,0 +1,39 @@ +from typing import Annotated +from swarms import create_openai_tool +from openai import OpenAI + +# Create an instance of the OpenAI client +client = OpenAI() + +# Define the user messages for the chat conversation +messages = [ + { + "role": "user", + "content": "What's the weather like in San Francisco, Tokyo, and Paris?", + } +] + + +# Define the BMI calculator tool using the create_openai_tool decorator +@create_openai_tool( + name="BMI Calculator", + description="Calculate the Body Mass Index (BMI)", +) +def calculate_bmi( + weight: Annotated[float, "Weight in kilograms"], + height: Annotated[float, "Height in meters"], +) -> Annotated[float, "Body Mass Index"]: + """Calculate the Body Mass Index (BMI) given a person's weight and height.""" + return weight / (height**2) + + +# Create a chat completion request using the OpenAI client +response = client.chat.completions.create( + model="gpt-3.5-turbo-0125", + messages=messages, + tools=calculate_bmi, + tool_choice="auto", # auto is default, but we'll be explicit +) + +# Print the generated response from the chat completion +print(response.choices[0].message["content"]) diff --git a/swarms/agents/simple_agent.py b/swarms/agents/simple_agent.py index ba67933c..f8fef0e2 100644 --- a/swarms/agents/simple_agent.py +++ b/swarms/agents/simple_agent.py @@ -3,7 +3,7 @@ import pkgutil from typing import Any import swarms.models -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM from swarms.structs.conversation import Conversation @@ -28,13 +28,13 @@ def get_llm_by_name(name: str): # Run the language model in a loop for n iterations def SimpleAgent( - llm: AbstractLLM = None, iters: Any = "automatic", *args, **kwargs + llm: BaseLLM = None, iters: Any = "automatic", *args, **kwargs ): """ A simple agent that interacts with a language model. Args: - llm (AbstractLLM): The language model to use for generating responses. + llm (BaseLLM): The language model to use for generating responses. iters (Any): The number of iterations or "automatic" to run indefinitely. *args: Additional positional arguments to pass to the language model. **kwargs: Additional keyword arguments to pass to the language model. diff --git a/swarms/agents/tool_agent.py b/swarms/agents/tool_agent.py index 001a96d3..4b67421f 100644 --- a/swarms/agents/tool_agent.py +++ b/swarms/agents/tool_agent.py @@ -1,7 +1,7 @@ from typing import Any, Optional, Callable from swarms.structs.agent import Agent -from swarms.tools.format_tools import Jsonformer +from swarms.tools.json_former import Jsonformer from swarms.utils.loguru_logger import logger diff --git a/swarms/memory/__init__.py b/swarms/memory/__init__.py index 7b56e444..9d4fa58b 100644 --- a/swarms/memory/__init__.py +++ b/swarms/memory/__init__.py @@ -1,6 +1,6 @@ from swarms.memory.action_subtask import ActionSubtaskEntry from swarms.memory.base_db import AbstractDatabase -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase from swarms.memory.dict_internal_memory import DictInternalMemory from swarms.memory.dict_shared_memory import DictSharedMemory from swarms.memory.short_term_memory import ShortTermMemory @@ -8,7 +8,7 @@ from swarms.memory.visual_memory import VisualShortTermMemory __all__ = [ "AbstractDatabase", - "AbstractVectorDatabase", + "BaseVectorDatabase", "ActionSubtaskEntry", "DictInternalMemory", "DictSharedMemory", diff --git a/swarms/memory/base_vectordb.py b/swarms/memory/base_vectordb.py index 64893ba1..20169bd0 100644 --- a/swarms/memory/base_vectordb.py +++ b/swarms/memory/base_vectordb.py @@ -1,7 +1,7 @@ from abc import ABC -class AbstractVectorDatabase(ABC): +class BaseVectorDatabase(ABC): """ Abstract base class for a database. diff --git a/swarms/memory/chroma_db.py b/swarms/memory/chroma_db.py index 033be6f6..f3f09d4d 100644 --- a/swarms/memory/chroma_db.py +++ b/swarms/memory/chroma_db.py @@ -9,14 +9,14 @@ from dotenv import load_dotenv from swarms.utils.data_to_text import data_to_text from swarms.utils.markdown_message import display_markdown_message -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase # Load environment variables load_dotenv() # Results storage using local ChromaDB -class ChromaDB(AbstractVectorDatabase): +class ChromaDB(BaseVectorDatabase): """ ChromaDB database diff --git a/swarms/memory/lanchain_chroma.py b/swarms/memory/lanchain_chroma.py index f3dd3d20..b2849e81 100644 --- a/swarms/memory/lanchain_chroma.py +++ b/swarms/memory/lanchain_chroma.py @@ -7,7 +7,7 @@ from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from swarms.models.popular_llms import OpenAIChat -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase def synchronized_mem(method): @@ -31,7 +31,7 @@ def synchronized_mem(method): return wrapper -class LangchainChromaVectorMemory(AbstractVectorDatabase): +class LangchainChromaVectorMemory(BaseVectorDatabase): """ A class representing a vector memory for storing and retrieving text entries. diff --git a/swarms/memory/pg.py b/swarms/memory/pg.py index a1b2605f..91d5665c 100644 --- a/swarms/memory/pg.py +++ b/swarms/memory/pg.py @@ -5,10 +5,10 @@ from sqlalchemy import JSON, Column, String, create_engine from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import Session -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase -class PostgresDB(AbstractVectorDatabase): +class PostgresDB(BaseVectorDatabase): """ A class representing a Postgres database. diff --git a/swarms/memory/pinecone.py b/swarms/memory/pinecone.py index fb9d32ba..54e6ea5b 100644 --- a/swarms/memory/pinecone.py +++ b/swarms/memory/pinecone.py @@ -3,12 +3,12 @@ from typing import Optional import pinecone from attr import define, field -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase from swarms.utils.hash import str_to_hash @define -class PineconeDB(AbstractVectorDatabase): +class PineconeDB(BaseVectorDatabase): """ PineconeDB is a vector storage driver that uses Pinecone as the underlying storage engine. diff --git a/swarms/memory/qdrant.py b/swarms/memory/qdrant.py index 49c5ef62..4df1f350 100644 --- a/swarms/memory/qdrant.py +++ b/swarms/memory/qdrant.py @@ -1,7 +1,7 @@ from typing import List from httpx import RequestError -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase try: from sentence_transformers import SentenceTransformer @@ -21,7 +21,7 @@ except ImportError: print("pip install qdrant-client") -class Qdrant(AbstractVectorDatabase): +class Qdrant(BaseVectorDatabase): """ Qdrant class for managing collections and performing vector operations using QdrantClient. diff --git a/swarms/memory/sqlite.py b/swarms/memory/sqlite.py index 7922e274..2ae3d860 100644 --- a/swarms/memory/sqlite.py +++ b/swarms/memory/sqlite.py @@ -1,6 +1,6 @@ from typing import Any, List, Optional, Tuple -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase try: import sqlite3 @@ -8,7 +8,7 @@ except ImportError: raise ImportError("Please install sqlite3 to use the SQLiteDB class.") -class SQLiteDB(AbstractVectorDatabase): +class SQLiteDB(BaseVectorDatabase): """ A reusable class for SQLite database operations with methods for adding, deleting, updating, and querying data. diff --git a/swarms/memory/weaviate_db.py b/swarms/memory/weaviate_db.py index b5b89e04..e9d7496d 100644 --- a/swarms/memory/weaviate_db.py +++ b/swarms/memory/weaviate_db.py @@ -4,7 +4,7 @@ Weaviate API Client from typing import Any, Dict, List, Optional -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase try: import weaviate @@ -12,7 +12,7 @@ except ImportError: print("pip install weaviate-client") -class WeaviateDB(AbstractVectorDatabase): +class WeaviateDB(BaseVectorDatabase): """ Weaviate API Client diff --git a/swarms/models/__init__.py b/swarms/models/__init__.py index b6f3c70c..27d31937 100644 --- a/swarms/models/__init__.py +++ b/swarms/models/__init__.py @@ -1,5 +1,5 @@ from swarms.models.base_embedding_model import BaseEmbeddingModel -from swarms.models.base_llm import AbstractLLM # noqa: E402 +from swarms.models.base_llm import BaseLLM # noqa: E402 from swarms.models.base_multimodal_model import BaseMultiModalModel from swarms.models.fire_function import FireFunctionCaller from swarms.models.fuyu import Fuyu # noqa: E402 @@ -46,7 +46,7 @@ from swarms.models.vilt import Vilt # noqa: E402 from swarms.models.openai_embeddings import OpenAIEmbeddings __all__ = [ - "AbstractLLM", + "BaseLLM", "Anthropic", "AzureOpenAI", "BaseEmbeddingModel", diff --git a/swarms/models/base_llm.py b/swarms/models/base_llm.py index 6d8ae898..d9881752 100644 --- a/swarms/models/base_llm.py +++ b/swarms/models/base_llm.py @@ -20,7 +20,7 @@ def count_tokens(text: str) -> int: return len(text.split()) -class AbstractLLM(ABC): +class BaseLLM(ABC): """Abstract Language Model that defines the interface for all language models Args: diff --git a/swarms/models/base_tts.py b/swarms/models/base_tts.py index 402b8501..a92a3bb7 100644 --- a/swarms/models/base_tts.py +++ b/swarms/models/base_tts.py @@ -2,14 +2,14 @@ import wave from abc import abstractmethod from typing import Optional -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM -class BaseTTSModel(AbstractLLM): +class BaseTTSModel(BaseLLM): """Base class for all TTS models. Args: - AbstractLLM (_type_): _description_ + BaseLLM (_type_): _description_ model_name (_type_): _description_ voice (_type_): _description_ chunk_size (_type_): _description_ diff --git a/swarms/models/base_ttv.py b/swarms/models/base_ttv.py index ee795c26..00052ba5 100644 --- a/swarms/models/base_ttv.py +++ b/swarms/models/base_ttv.py @@ -5,10 +5,10 @@ from typing import List, Optional from diffusers.utils import export_to_video -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM -class BaseTextToVideo(AbstractLLM): +class BaseTextToVideo(BaseLLM): """BaseTextToVideo class represents prebuilt text-to-video models.""" def __init__(self, *args, **kwargs): diff --git a/swarms/models/fire_function.py b/swarms/models/fire_function.py index f61ec2bd..88381888 100644 --- a/swarms/models/fire_function.py +++ b/swarms/models/fire_function.py @@ -3,10 +3,10 @@ from typing import Any from transformers import AutoModelForCausalLM, AutoTokenizer -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM -class FireFunctionCaller(AbstractLLM): +class FireFunctionCaller(BaseLLM): """ A class that represents a caller for the FireFunction model. diff --git a/swarms/models/huggingface.py b/swarms/models/huggingface.py index 993aa8cf..1db07fe1 100644 --- a/swarms/models/huggingface.py +++ b/swarms/models/huggingface.py @@ -11,10 +11,10 @@ from transformers import ( BitsAndBytesConfig, ) -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM -class HuggingfaceLLM(AbstractLLM): +class HuggingfaceLLM(BaseLLM): """ A class for running inference on a given model. diff --git a/swarms/models/huggingface_pipeline.py b/swarms/models/huggingface_pipeline.py index f1cf150c..118766a0 100644 --- a/swarms/models/huggingface_pipeline.py +++ b/swarms/models/huggingface_pipeline.py @@ -3,15 +3,15 @@ from abc import abstractmethod import torch from termcolor import colored -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM from transformers.pipelines import pipeline -class HuggingfacePipeline(AbstractLLM): +class HuggingfacePipeline(BaseLLM): """HuggingfacePipeline Args: - AbstractLLM (AbstractLLM): [description] + BaseLLM (BaseLLM): [description] task (str, optional): [description]. Defaults to "text-generation". model_name (str, optional): [description]. Defaults to None. use_fp8 (bool, optional): [description]. Defaults to False. diff --git a/swarms/models/llama_function_caller.py b/swarms/models/llama_function_caller.py index 77856078..0f175edb 100644 --- a/swarms/models/llama_function_caller.py +++ b/swarms/models/llama_function_caller.py @@ -12,10 +12,10 @@ from transformers import ( BitsAndBytesConfig, TextStreamer, ) -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM -class LlamaFunctionCaller(AbstractLLM): +class LlamaFunctionCaller(BaseLLM): """ A class to manage and execute Llama functions. diff --git a/swarms/models/mistral.py b/swarms/models/mistral.py index e2003c97..f2d5be3c 100644 --- a/swarms/models/mistral.py +++ b/swarms/models/mistral.py @@ -1,11 +1,11 @@ import torch from transformers import AutoModelForCausalLM, AutoTokenizer -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM from swarms.structs.message import Message -class Mistral(AbstractLLM): +class Mistral(BaseLLM): """ Mistral is an all-new llm diff --git a/swarms/models/mixtral.py b/swarms/models/mixtral.py index 21720845..05edb84b 100644 --- a/swarms/models/mixtral.py +++ b/swarms/models/mixtral.py @@ -2,10 +2,10 @@ from typing import Optional from transformers import AutoModelForCausalLM, AutoTokenizer -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM -class Mixtral(AbstractLLM): +class Mixtral(BaseLLM): """Mixtral model. Args: diff --git a/swarms/models/open_router.py b/swarms/models/open_router.py index 7aff0aca..4140b736 100644 --- a/swarms/models/open_router.py +++ b/swarms/models/open_router.py @@ -1,4 +1,4 @@ -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM from pydantic import BaseModel from typing import List, Dict import openai @@ -9,7 +9,7 @@ class OpenRouterRequest(BaseModel): messages: List[Dict[str, str]] = [] -class OpenRouterChat(AbstractLLM): +class OpenRouterChat(BaseLLM): """ A class representing an OpenRouter chat model. diff --git a/swarms/models/openai_tts.py b/swarms/models/openai_tts.py index ed19a8d3..f3e8b850 100644 --- a/swarms/models/openai_tts.py +++ b/swarms/models/openai_tts.py @@ -5,7 +5,7 @@ import sys import requests from dotenv import load_dotenv -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM try: import wave @@ -26,7 +26,7 @@ def openai_api_key_env(): return openai_api_key -class OpenAITTS(AbstractLLM): +class OpenAITTS(BaseLLM): """OpenAI TTS model Attributes: diff --git a/swarms/models/together.py b/swarms/models/together.py index 06cc18ba..778f6684 100644 --- a/swarms/models/together.py +++ b/swarms/models/together.py @@ -5,7 +5,7 @@ from typing import Optional import requests from dotenv import load_dotenv -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM # Load environment variables load_dotenv() @@ -16,7 +16,7 @@ def together_api_key_env(): return os.getenv("TOGETHER_API_KEY") -class TogetherLLM(AbstractLLM): +class TogetherLLM(BaseLLM): """ GPT-4 Vision API diff --git a/swarms/structs/__init__.py b/swarms/structs/__init__.py index 2f4d4a50..0eac3a15 100644 --- a/swarms/structs/__init__.py +++ b/swarms/structs/__init__.py @@ -84,6 +84,7 @@ from swarms.structs.yaml_model import ( pydantic_type_to_yaml_schema, YamlModel, ) +from swarms.structs.message_pool import MessagePool __all__ = [ "Agent", @@ -155,4 +156,5 @@ __all__ = [ "create_yaml_schema_from_dict", "pydantic_type_to_yaml_schema", "YamlModel", + "MessagePool", ] diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index 31ce5ce8..bb0bfc76 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -13,7 +13,7 @@ import yaml from loguru import logger from termcolor import colored -from swarms.memory.base_vectordb import AbstractVectorDatabase +from swarms.memory.base_vectordb import BaseVectorDatabase from swarms.prompts.agent_system_prompts import AGENT_SYSTEM_PROMPT_3 from swarms.prompts.multi_modal_autonomous_instruction_prompt import ( MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1, @@ -25,16 +25,16 @@ from swarms.utils.data_to_text import data_to_text from swarms.utils.parse_code import extract_code_from_markdown from swarms.utils.pdf_to_text import pdf_to_text from swarms.tools.exec_tool import execute_tool_by_name -from swarms.tools.code_executor import CodeExecutor from swarms.prompts.worker_prompt import tool_usage_worker_prompt from pydantic import BaseModel from swarms.tools.pydantic_to_json import ( - pydantic_to_functions, - multi_pydantic_to_functions, + base_model_to_openai_function, + multi_base_model_to_openai_function, ) from swarms.structs.schemas import Step, ManySteps from swarms.telemetry.user_utils import get_user_device_data from swarms.structs.yaml_model import YamlModel +from swarms.tools.code_interpreter import SubprocessCodeInterpreter # Utils @@ -113,7 +113,7 @@ class Agent: pdf_path (str): The path to the pdf list_of_pdf (str): The list of pdf tokenizer (Any): The tokenizer - memory (AbstractVectorDatabase): The memory + memory (BaseVectorDatabase): The memory preset_stopping_token (bool): Enable preset stopping token traceback (Any): The traceback traceback_handlers (Any): The traceback handlers @@ -198,7 +198,7 @@ class Agent: pdf_path: Optional[str] = None, list_of_pdf: Optional[str] = None, tokenizer: Optional[Any] = None, - long_term_memory: Optional[AbstractVectorDatabase] = None, + long_term_memory: Optional[BaseVectorDatabase] = None, preset_stopping_token: Optional[bool] = False, traceback: Optional[Any] = None, traceback_handlers: Optional[Any] = None, @@ -639,7 +639,7 @@ class Agent: return json.loads(json_str) def pydantic_model_to_json_str(self, model: BaseModel): - return str(pydantic_to_functions(model)) + return str(base_model_to_openai_function(model)) def dict_to_json_str(self, dictionary: dict): """Convert a dictionary to a JSON string""" @@ -659,14 +659,14 @@ class Agent: self, tool_schema: BaseModel = None, *args, **kwargs ): """Convert a tool schema to a string""" - out = pydantic_to_functions(tool_schema) + out = base_model_to_openai_function(tool_schema) return str(out) def tool_schemas_to_str( self, tool_schemas: List[BaseModel] = None, *args, **kwargs ): """Convert a list of tool schemas to a string""" - out = multi_pydantic_to_functions(tool_schemas) + out = multi_base_model_to_openai_function(tool_schemas) return str(out) def str_to_pydantic_model(self, string: str, model: BaseModel): @@ -790,8 +790,9 @@ class Agent: ) # Execute the code - # execution = execute_command(extracted_code) - execution = CodeExecutor().run(extracted_code) + execution = SubprocessCodeInterpreter( + debug_mode=True + ).run(extracted_code) # Add the execution to the memory self.short_memory.add( diff --git a/swarms/structs/meta_system_prompt.py b/swarms/structs/meta_system_prompt.py index 6795ddb5..b2a4e8bf 100644 --- a/swarms/structs/meta_system_prompt.py +++ b/swarms/structs/meta_system_prompt.py @@ -1,7 +1,7 @@ from swarms.structs.agent import Agent from typing import Union from swarms.models.popular_llms import OpenAIChat -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM from swarms.prompts.meta_system_prompt import ( meta_system_prompt_generator, ) @@ -12,13 +12,13 @@ meta_prompter_llm = OpenAIChat( def meta_system_prompt( - agent: Union[Agent, AbstractLLM], system_prompt: str + agent: Union[Agent, BaseLLM], system_prompt: str ) -> str: """ Generates a meta system prompt for the given agent using the provided system prompt. Args: - agent (Union[Agent, AbstractLLM]): The agent or LLM (Language Learning Model) for which the meta system prompt is generated. + agent (Union[Agent, BaseLLM]): The agent or LLM (Language Learning Model) for which the meta system prompt is generated. system_prompt (str): The system prompt used to generate the meta system prompt. Returns: diff --git a/swarms/structs/omni_agent_types.py b/swarms/structs/omni_agent_types.py index db3ca664..e2c310cf 100644 --- a/swarms/structs/omni_agent_types.py +++ b/swarms/structs/omni_agent_types.py @@ -4,12 +4,12 @@ from typing import ( Sequence, Union, ) -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM from swarms.models.base_multimodal_model import BaseMultiModalModel from swarms.structs.agent import Agent # Unified type for agent -AgentType = Union[Agent, Callable, Any, AbstractLLM, BaseMultiModalModel] +AgentType = Union[Agent, Callable, Any, BaseLLM, BaseMultiModalModel] # List of agents AgentListType = Sequence[AgentType] diff --git a/swarms/structs/sequential_workflow.py b/swarms/structs/sequential_workflow.py index 22320205..468b46cd 100644 --- a/swarms/structs/sequential_workflow.py +++ b/swarms/structs/sequential_workflow.py @@ -4,10 +4,11 @@ from swarms.structs.agent import Agent from swarms.structs.conversation import Conversation from swarms.utils.loguru_logger import logger from swarms.utils.try_except_wrapper import try_except_wrapper +from swarms.structs.base_workflow import BaseWorkflow @dataclass -class SequentialWorkflow: +class SequentialWorkflow(BaseWorkflow): name: str = "Sequential Workflow" description: str = None objective: str = None @@ -22,6 +23,7 @@ class SequentialWorkflow: # ) # List to store tasks def __post_init__(self): + super().__init__() self.conversation = Conversation( time_enabled=True, autosave=True, @@ -51,35 +53,6 @@ class SequentialWorkflow: def reset_workflow(self) -> None: self.conversation = {} - # @try_except_wrapper - # WITH TASK POOL - # def run(self): - # if not self.agent_pool: - # raise ValueError("No agents have been added to the workflow.") - - # self.workflow_bootup() - # loops = 0 - # prompt = None # Initialize prompt to None; will be updated with the output of each agent - # while loops < self.max_loops: - # for i, agent in enumerate(self.agent_pool): - # task = ( - # self.task_pool[i] if prompt is None else prompt - # ) # Use initial task or the output from the previous agent - # logger.info( - # f"Agent: {agent.agent_name} {i+1} is executing the task" - # ) - # logger.info("\n") - # output = agent.run(task) - # if output is None: - # logger.error( - # f"Agent {i+1} returned None for task: {task}" - # ) - # raise ValueError(f"Agent {i+1} returned None.") - # self.conversation.add(agent.agent_name, output) - # prompt = output # Update prompt with current agent's output to pass to the next agent - # logger.info(f"Prompt: {prompt}") - # loops += 1 - # return self.conversation.return_history_as_string() @try_except_wrapper def run(self): if not self.agent_pool: diff --git a/swarms/tools/__init__.py b/swarms/tools/__init__.py index cf5e9a59..567a176c 100644 --- a/swarms/tools/__init__.py +++ b/swarms/tools/__init__.py @@ -1,5 +1,4 @@ from swarms.tools.tool import BaseTool, Tool, StructuredTool, tool -from swarms.tools.code_executor import CodeExecutor from swarms.tools.exec_tool import ( AgentAction, AgentOutputParser, @@ -16,23 +15,24 @@ from swarms.tools.tool_utils import ( ) from swarms.tools.pydantic_to_json import ( _remove_a_key, - pydantic_to_functions, - multi_pydantic_to_functions, + base_model_to_openai_function, + multi_base_model_to_openai_function, function_to_str, functions_to_str, ) from swarms.tools.openai_func_calling_schema import ( - OpenAIFunctionCallSchema, + OpenAIFunctionCallSchema as OpenAIFunctionCallSchemaBaseModel, ) from swarms.tools.py_func_to_openai_func_str import ( - get_parameter_json_schema, - get_required_params, - get_parameters, - get_openai_function_schema, - get_load_param_if_needed_function, + get_openai_function_schema_from_func, load_basemodels_if_needed, - serialize_to_str, + get_load_param_if_needed_function, + get_parameters, + get_required_params, + Function, + ToolFunction, ) +from swarms.tools.openai_tool_creator_decorator import create_openai_tool __all__ = [ @@ -40,7 +40,6 @@ __all__ = [ "Tool", "StructuredTool", "tool", - "CodeExecutor", "AgentAction", "AgentOutputParser", "BaseAgentOutputParser", @@ -52,16 +51,17 @@ __all__ = [ "scrape_tool_func_docs", "tool_find_by_name", "_remove_a_key", - "pydantic_to_functions", - "multi_pydantic_to_functions", + "base_model_to_openai_function", + "multi_base_model_to_openai_function", "function_to_str", "functions_to_str", - "OpenAIFunctionCallSchema", - "get_parameter_json_schema", - "get_required_params", - "get_parameters", - "get_openai_function_schema", - "get_load_param_if_needed_function", + "OpenAIFunctionCallSchemaBaseModel", + "get_openai_function_schema_from_func", "load_basemodels_if_needed", - "serialize_to_str", + "get_load_param_if_needed_function", + "get_parameters", + "get_required_params", + "Function", + "ToolFunction", + "create_openai_tool", ] diff --git a/swarms/tools/code_executor.py b/swarms/tools/code_executor.py deleted file mode 100644 index 4acf911c..00000000 --- a/swarms/tools/code_executor.py +++ /dev/null @@ -1,97 +0,0 @@ -import os -import subprocess -import tempfile - - -class CodeExecutor: - """ - A class for executing code snippets. - - Args: - code (str, optional): The code snippet to be executed. Defaults to None. - - Methods: - is_python_code(code: str = None) -> bool: - Checks if the given code is Python code. - - run_python(code: str = None) -> str: - Executes the given Python code and returns the output. - - run(code: str = None) -> str: - Executes the given code and returns the output. - - __call__() -> str: - Executes the code and returns the output. - """ - - def __init__(self): - self.code = None - - def run_python(self, code: str = None) -> str: - """ - Executes the given Python code and returns the output. - - Args: - code (str, optional): The Python code to be executed. Defaults to None. - - Returns: - str: The output of the code execution. - """ - code = code or self.code - try: - # Create a temporary file - with tempfile.NamedTemporaryFile( - suffix=".py", delete=False - ) as temp: - temp.write(code.encode()) - temp_filename = temp.name - - # Execute the temporary file - output = subprocess.check_output( - f"python {temp_filename}", - shell=True, - ) - - # Delete the temporary file - os.remove(temp_filename) - - return output.decode("utf-8") - except subprocess.CalledProcessError as error: - return error.output.decode("utf-8") - except Exception as error: - return str(error) - - def run(self, code: str = None) -> str: - """ - Executes the given code and returns the output. - - Args: - code (str, optional): The code to be executed. Defaults to None. - - Returns: - str: The output of the code execution. - """ - try: - output = subprocess.check_output( - code, - shell=True, - ) - return output.decode("utf-8") - except subprocess.CalledProcessError as e: - return e.output.decode("utf-8") - except Exception as e: - return str(e) - - def __call__(self, task: str, *args, **kwargs) -> str: - """ - Executes the code and returns the output. - - Returns: - str: The output of the code execution. - """ - return self.run(task, *args, **kwargs) - - -# model = CodeExecutor() -# out = model.run("python3") -# print(out) diff --git a/swarms/tools/execution_sandbox.py b/swarms/tools/execution_sandbox.py deleted file mode 100644 index 8396aba6..00000000 --- a/swarms/tools/execution_sandbox.py +++ /dev/null @@ -1,112 +0,0 @@ -import logging -import os -import subprocess -import tempfile -import traceback -from typing import Tuple - - -async def execute_code_async(code: str) -> Tuple[str, str]: - """ - This function takes a string of code as input, adds some documentation to it, - and then attempts to execute the code asynchronously. If the code execution is successful, - the function returns the new code and an empty string. If the code execution - fails, the function returns the new code and the error message. - - Args: - code (str): The original code. - - Returns: - Tuple[str, str]: The new code with added documentation and the error message (if any). - """ - - # Validate the input - if not isinstance(code, str): - raise ValueError("The code must be a string.") - - # Add some documentation to the code - documentation = """ - ''' - This code has been prepared for deployment in an execution sandbox. - ''' - """ - - # Combine the documentation and the original code - new_code = documentation + "\n" + code - - # Attempt to execute the code - error_message = "" - try: - # Use a secure environment to execute the code (e.g., a Docker container) - # This is just a placeholder and would require additional setup and dependencies - # exec_in_docker(new_code) - out = exec(new_code) - return out - # logging.info("Code executed successfully.") - except Exception: - error_message = traceback.format_exc() - logging.error("Code execution failed. Error: %s", error_message) - - # Return the new code and the error message - return out, error_message - - -def execute_code_in_sandbox(code: str, language: str = "python"): - """ - Execute code in a specified language using subprocess and return the results or errors. - - Args: - code (str): The code to be executed. - language (str): The programming language of the code. Currently supports 'python' only. - - Returns: - dict: A dictionary containing either the result or any errors. - """ - result = {"output": None, "errors": None} - - try: - if language == "python": - # Write the code to a temporary file - with tempfile.NamedTemporaryFile( - delete=False, suffix=".py", mode="w" - ) as tmp: - tmp.write(code) - tmp_path = tmp.name - - # Execute the code in a separate process - process = subprocess.run( - ["python", tmp_path], - capture_output=True, - text=True, - timeout=10, - ) - - # Capture the output and errors - result["output"] = process.stdout - result["errors"] = process.stderr - - else: - # Placeholder for other languages; each would need its own implementation - raise NotImplementedError( - f"Execution for {language} not implemented." - ) - - except subprocess.TimeoutExpired: - result["errors"] = "Execution timed out." - except Exception as e: - result["errors"] = str(e) - finally: - # Ensure the temporary file is removed after execution - if "tmp_path" in locals(): - os.remove(tmp_path) - - return result - - -# # Example usage -# code_to_execute = """ -# print("Hello, world!") -# """ - -# execution_result = execute_code(code_to_execute) -# print(json.dumps(execution_result, indent=4)) diff --git a/swarms/tools/function_calling_utils.py b/swarms/tools/function_calling_utils.py deleted file mode 100644 index 1bd29460..00000000 --- a/swarms/tools/function_calling_utils.py +++ /dev/null @@ -1,40 +0,0 @@ -import concurrent.futures -from typing import Any, Callable, Dict, List -from inspect import iscoroutinefunction -import asyncio - - -# Helper function to run an asynchronous function in a synchronous way -def run_async_function_in_sync(func: Callable, *args, **kwargs) -> Any: - loop = asyncio.new_event_loop() - asyncio.set_event_loop(loop) - coroutine = func(*args, **kwargs) - return loop.run_until_complete(coroutine) - - -# Main omni function for parallel execution -def omni_parallel_function_caller( - function_calls: List[Dict[str, Any]] -) -> List[Any]: - results = [] - with concurrent.futures.ThreadPoolExecutor() as executor: - future_to_call = {} - for call in function_calls: - func = call["function"] - args = call.get("args", ()) - kwargs = call.get("kwargs", {}) - - if iscoroutinefunction(func): - # Wrap and execute asynchronous function in a separate process - future = executor.submit( - run_async_function_in_sync, func, *args, **kwargs - ) - else: - # Directly execute synchronous function in a thread - future = executor.submit(func, *args, **kwargs) - - future_to_call[future] = call - - for future in concurrent.futures.as_completed(future_to_call): - results.append(future.result()) - return results diff --git a/swarms/tools/format_tools.py b/swarms/tools/json_former.py similarity index 99% rename from swarms/tools/format_tools.py rename to swarms/tools/json_former.py index 13724d3b..20a25c9a 100644 --- a/swarms/tools/format_tools.py +++ b/swarms/tools/json_former.py @@ -9,7 +9,7 @@ from swarms.tools.logits_processor import ( OutputNumbersTokens, StringStoppingCriteria, ) -from swarms.models.base_llm import AbstractLLM +from swarms.models.base_llm import BaseLLM GENERATION_MARKER = "|GENERATION|" @@ -47,7 +47,7 @@ class Jsonformer: max_number_tokens: int = 6, temperature: float = 1.0, max_string_token_length: int = 10, - llm: AbstractLLM = None, + llm: BaseLLM = None, ): self.model = model self.tokenizer = tokenizer diff --git a/swarms/tools/openai_tool_creator_decorator.py b/swarms/tools/openai_tool_creator_decorator.py new file mode 100644 index 00000000..4a10064d --- /dev/null +++ b/swarms/tools/openai_tool_creator_decorator.py @@ -0,0 +1,81 @@ +from functools import wraps + +from swarms.tools.py_func_to_openai_func_str import ( + get_openai_function_schema_from_func, +) +from swarms.utils.loguru_logger import logger + + +def create_openai_tool( + name: str = None, + description: str = None, + return_dict: bool = True, + verbose: bool = True, + return_string: bool = False, + return_yaml: bool = False, +): + """ + A decorator function that generates an OpenAI function schema. + + Args: + name (str, optional): The name of the OpenAI function. Defaults to None. + description (str, optional): The description of the OpenAI function. Defaults to None. + *args: Variable length argument list. + **kwargs: Arbitrary keyword arguments. + + Returns: + dict: The generated OpenAI function schema. + + """ + + def decorator(func): + @wraps(func) + def wrapper(*args, **kwargs): + try: + # Log the function call + logger.info(f"Creating Tool: {func.__name__}") + + # Assert that the arguments are of the correct type + assert isinstance(name, str), "name must be a string" + assert isinstance( + description, str + ), "description must be a string" + assert isinstance( + return_dict, bool + ), "return_dict must be a boolean" + assert isinstance( + verbose, bool + ), "verbose must be a boolean" + + # Call the function + func(*args, **kwargs) + + # Get the openai function schema + schema = get_openai_function_schema_from_func( + func, name=name, description=description + ) + + # Return the schema + if return_dict: + return schema + elif return_string is True: + return str(schema) + elif return_yaml is True: + # schema = YamlModel().dict_to_yaml(schema) + return schema + else: + return schema + + except AssertionError as e: + # Log the assertion error + logger.error(f"Assertion error: {str(e)}") + raise + + except Exception as e: + # Log the exception + logger.error(f"Exception occurred: {str(e)}") + raise + + return wrapper + + return decorator diff --git a/swarms/tools/py_func_to_openai_func_str.py b/swarms/tools/py_func_to_openai_func_str.py index 2fd39736..347cf44b 100644 --- a/swarms/tools/py_func_to_openai_func_str.py +++ b/swarms/tools/py_func_to_openai_func_str.py @@ -368,7 +368,7 @@ def get_missing_annotations( return missing, unannotated_with_default -def get_openai_function_schema( +def get_openai_function_schema_from_func( function: Callable[..., Any], *, name: Optional[str] = None, diff --git a/swarms/tools/pydantic_to_json.py b/swarms/tools/pydantic_to_json.py index f9f92825..2ba33b33 100644 --- a/swarms/tools/pydantic_to_json.py +++ b/swarms/tools/pydantic_to_json.py @@ -14,8 +14,9 @@ def _remove_a_key(d: dict, remove_key: str) -> None: _remove_a_key(d[key], remove_key) -def pydantic_to_functions( +def base_model_to_openai_function( pydantic_type: type[BaseModel], + output_str: bool = False, ) -> dict[str, Any]: """ Convert a Pydantic model to a dictionary representation of functions. @@ -57,21 +58,37 @@ def pydantic_to_functions( _remove_a_key(parameters, "title") _remove_a_key(parameters, "additionalProperties") - return { - "function_call": { - "name": pydantic_type.__class__.__name__.lower(), - }, - "functions": [ - { + if output_str: + out = { + "function_call": { "name": pydantic_type.__class__.__name__.lower(), - "description": schema["description"], - "parameters": parameters, }, - ], - } + "functions": [ + { + "name": pydantic_type.__class__.__name__.lower(), + "description": schema["description"], + "parameters": parameters, + }, + ], + } + return str(out) + + else: + return { + "function_call": { + "name": pydantic_type.__class__.__name__.lower(), + }, + "functions": [ + { + "name": pydantic_type.__class__.__name__.lower(), + "description": schema["description"], + "parameters": parameters, + }, + ], + } -def multi_pydantic_to_functions( +def multi_base_model_to_openai_function( pydantic_types: List[BaseModel] = None, ) -> dict[str, Any]: """ @@ -85,7 +102,7 @@ def multi_pydantic_to_functions( """ functions: list[dict[str, Any]] = [ - pydantic_to_functions(pydantic_type)["functions"][0] + base_model_to_openai_function(pydantic_type)["functions"][0] for pydantic_type in pydantic_types ]