parent
916e66d03f
commit
a5dcc0f175
@ -0,0 +1,197 @@
|
||||
from typing import Optional
|
||||
from swarms.memory.vector_stores.base import BaseVector
|
||||
import pinecone
|
||||
from attr import define, field
|
||||
from swarms.utils.hash import str_to_hash
|
||||
|
||||
|
||||
@define
|
||||
class PineconeVector(BaseVector):
|
||||
"""
|
||||
PineconeVector is a vector storage driver that uses Pinecone as the underlying storage engine.
|
||||
|
||||
Pinecone is a vector database that allows you to store, search, and retrieve high-dimensional vectors with
|
||||
blazing speed and low latency. It is a managed service that is easy to use and scales effortlessly, so you can
|
||||
focus on building your applications instead of managing your infrastructure.
|
||||
|
||||
Args:
|
||||
api_key (str): The API key for your Pinecone account.
|
||||
index_name (str): The name of the index to use.
|
||||
environment (str): The environment to use. Either "us-west1-gcp" or "us-east1-gcp".
|
||||
project_name (str, optional): The name of the project to use. Defaults to None.
|
||||
index (pinecone.Index, optional): The Pinecone index to use. Defaults to None.
|
||||
|
||||
Methods:
|
||||
upsert_vector(vector: list[float], vector_id: Optional[str] = None, namespace: Optional[str] = None, meta: Optional[dict] = None, **kwargs) -> str:
|
||||
Upserts a vector into the index.
|
||||
load_entry(vector_id: str, namespace: Optional[str] = None) -> Optional[BaseVector.Entry]:
|
||||
Loads a single vector from the index.
|
||||
load_entries(namespace: Optional[str] = None) -> list[BaseVector.Entry]:
|
||||
Loads all vectors from the index.
|
||||
query(query: str, count: Optional[int] = None, namespace: Optional[str] = None, include_vectors: bool = False, include_metadata=True, **kwargs) -> list[BaseVector.QueryResult]:
|
||||
Queries the index for vectors similar to the given query string.
|
||||
create_index(name: str, **kwargs) -> None:
|
||||
Creates a new index.
|
||||
|
||||
Usage:
|
||||
>>> from swarms.memory.vector_stores.pinecone import PineconeVector
|
||||
>>> from swarms.utils.embeddings import USEEmbedding
|
||||
>>> from swarms.utils.hash import str_to_hash
|
||||
>>> from swarms.utils.dataframe import dataframe_to_hash
|
||||
>>> import pandas as pd
|
||||
>>>
|
||||
>>> # Create a new PineconeVector instance:
|
||||
>>> pv = PineconeVector(
|
||||
>>> api_key="your-api-key",
|
||||
>>> index_name="your-index-name",
|
||||
>>> environment="us-west1-gcp",
|
||||
>>> project_name="your-project-name"
|
||||
>>> )
|
||||
>>> # Create a new index:
|
||||
>>> pv.create_index("your-index-name")
|
||||
>>> # Create a new USEEmbedding instance:
|
||||
>>> use = USEEmbedding()
|
||||
>>> # Create a new dataframe:
|
||||
>>> df = pd.DataFrame({
|
||||
>>> "text": [
|
||||
>>> "This is a test",
|
||||
>>> "This is another test",
|
||||
>>> "This is a third test"
|
||||
>>> ]
|
||||
>>> })
|
||||
>>> # Embed the dataframe:
|
||||
>>> df["embedding"] = df["text"].apply(use.embed_string)
|
||||
>>> # Upsert the dataframe into the index:
|
||||
>>> pv.upsert_vector(
|
||||
>>> vector=df["embedding"].tolist(),
|
||||
>>> vector_id=dataframe_to_hash(df),
|
||||
>>> namespace="your-namespace"
|
||||
>>> )
|
||||
>>> # Query the index:
|
||||
>>> pv.query(
|
||||
>>> query="This is a test",
|
||||
>>> count=10,
|
||||
>>> namespace="your-namespace"
|
||||
>>> )
|
||||
>>> # Load a single entry from the index:
|
||||
>>> pv.load_entry(
|
||||
>>> vector_id=dataframe_to_hash(df),
|
||||
>>> namespace="your-namespace"
|
||||
>>> )
|
||||
>>> # Load all entries from the index:
|
||||
>>> pv.load_entries(
|
||||
>>> namespace="your-namespace"
|
||||
>>> )
|
||||
|
||||
|
||||
"""
|
||||
api_key: str = field(kw_only=True)
|
||||
index_name: str = field(kw_only=True)
|
||||
environment: str = field(kw_only=True)
|
||||
project_name: Optional[str] = field(default=None, kw_only=True)
|
||||
index: pinecone.Index = field(init=False)
|
||||
|
||||
def __attrs_post_init__(self) -> None:
|
||||
pinecone.init(
|
||||
api_key=self.api_key,
|
||||
environment=self.environment,
|
||||
project_name=self.project_name
|
||||
)
|
||||
|
||||
self.index = pinecone.Index(self.index_name)
|
||||
|
||||
def upsert_vector(
|
||||
self,
|
||||
vector: list[float],
|
||||
vector_id: Optional[str] = None,
|
||||
namespace: Optional[str] = None,
|
||||
meta: Optional[dict] = None,
|
||||
**kwargs
|
||||
) -> str:
|
||||
vector_id = vector_id if vector_id else str_to_hash(str(vector))
|
||||
|
||||
params = {
|
||||
"namespace": namespace
|
||||
} | kwargs
|
||||
|
||||
self.index.upsert([(vector_id, vector, meta)], **params)
|
||||
|
||||
return vector_id
|
||||
|
||||
def load_entry(self, vector_id: str, namespace: Optional[str] = None) -> Optional[BaseVector.Entry]:
|
||||
result = self.index.fetch(ids=[vector_id], namespace=namespace).to_dict()
|
||||
vectors = list(result["vectors"].values())
|
||||
|
||||
if len(vectors) > 0:
|
||||
vector = vectors[0]
|
||||
|
||||
return BaseVector.Entry(
|
||||
id=vector["id"],
|
||||
meta=vector["metadata"],
|
||||
vector=vector["values"],
|
||||
namespace=result["namespace"]
|
||||
)
|
||||
else:
|
||||
return None
|
||||
|
||||
def load_entries(self, namespace: Optional[str] = None) -> list[BaseVector.Entry]:
|
||||
# This is a hacky way to query up to 10,000 values from Pinecone. Waiting on an official API for fetching
|
||||
# all values from a namespace:
|
||||
# https://community.pinecone.io/t/is-there-a-way-to-query-all-the-vectors-and-or-metadata-from-a-namespace/797/5
|
||||
|
||||
results = self.index.query(
|
||||
self.embedding_driver.embed_string(""),
|
||||
top_k=10000,
|
||||
include_metadata=True,
|
||||
namespace=namespace
|
||||
)
|
||||
|
||||
return [
|
||||
BaseVector.Entry(
|
||||
id=r["id"],
|
||||
vector=r["values"],
|
||||
meta=r["metadata"],
|
||||
namespace=results["namespace"]
|
||||
)
|
||||
for r in results["matches"]
|
||||
]
|
||||
|
||||
def query(
|
||||
self,
|
||||
query: str,
|
||||
count: Optional[int] = None,
|
||||
namespace: Optional[str] = None,
|
||||
include_vectors: bool = False,
|
||||
# PineconeVectorStorageDriver-specific params:
|
||||
include_metadata=True,
|
||||
**kwargs
|
||||
) -> list[BaseVector.QueryResult]:
|
||||
vector = self.embedding_driver.embed_string(query)
|
||||
|
||||
params = {
|
||||
"top_k": count if count else BaseVector.DEFAULT_QUERY_COUNT,
|
||||
"namespace": namespace,
|
||||
"include_values": include_vectors,
|
||||
"include_metadata": include_metadata
|
||||
} | kwargs
|
||||
|
||||
results = self.index.query(vector, **params)
|
||||
|
||||
return [
|
||||
BaseVector.QueryResult(
|
||||
id=r["id"],
|
||||
vector=r["values"],
|
||||
score=r["score"],
|
||||
meta=r["metadata"],
|
||||
namespace=results["namespace"]
|
||||
)
|
||||
for r in results["matches"]
|
||||
]
|
||||
|
||||
def create_index(self, name: str, **kwargs) -> None:
|
||||
params = {
|
||||
"name": name,
|
||||
"dimension": self.embedding_driver.dimensions
|
||||
} | kwargs
|
||||
|
||||
pinecone.create_index(**params)
|
@ -0,0 +1,12 @@
|
||||
import pandas as pd
|
||||
import hashlib
|
||||
|
||||
def dataframe_to_hash(dataframe: pd.DataFrame) -> str:
|
||||
return hashlib.sha256(pd.util.hash_pandas_object(dataframe, index=True).values).hexdigest()
|
||||
|
||||
def str_to_hash(text: str, hash_algorithm: str = "sha256") -> str:
|
||||
m = hashlib.new(hash_algorithm)
|
||||
|
||||
m.update(text.encode())
|
||||
|
||||
return m.hexdigest()
|
Loading…
Reference in new issue