pull/55/head
Kye 1 year ago
parent 536c793ea6
commit a5de07505c

@ -1,6 +1,6 @@
from langchain.llms import GooglePalm, OpenAIChat
from swarms.swarms.god_mode import Anthropic, GodMode from swarms.models import Anthropic, GooglePalm, OpenAIChat
from swarms.swarms.god_mode import GodMode
claude = Anthropic(anthropic_api_key="") claude = Anthropic(anthropic_api_key="")
palm = GooglePalm(google_api_key="") palm = GooglePalm(google_api_key="")

@ -1,47 +1,5 @@
from typing import List, Callable from typing import List, Callable
from swarms import Worker from swarms import Worker, MultiAgentDebate, select_speaker
class MultiAgentDebate:
def __init__(
self,
agents: List[Worker],
selection_func: Callable[[int, List[Worker]], int]
):
self.agents = agents
self.selection_func = selection_func
def reset_agents(self):
for agent in self.agents:
agent.reset()
def inject_agent(self, agent: Worker):
self.agents.append(agent)
def run(self, task: str, max_iters: int = None):
self.reset_agents()
results = []
for i in range(max_iters or len(self.agents)):
speaker_idx = self.selection_func(i, self.agents)
speaker = self.agents[speaker_idx]
response = speaker.run(task)
results.append({
'agent': speaker.ai_name,
'response': response
})
return results
def update_task(self, task: str):
self.task = task
def format_results(self, results):
formatted_results = "\n".join([f"Agent {result['agent']} responded: {result['response']}" for result in results])
return formatted_results
# Define a selection function
def select_speaker(step: int, agents: List[Worker]) -> int:
# This function selects the speaker in a round-robin fashion
return step % len(agents)
# Initialize agents # Initialize agents
worker1 = Worker(openai_api_key="", ai_name="Optimus Prime") worker1 = Worker(openai_api_key="", ai_name="Optimus Prime")

@ -12,23 +12,14 @@ from swarms.workers.worker import Worker
# from swarms.boss.boss_node import Boss # from swarms.boss.boss_node import Boss
#models #models
from swarms.models.anthropic import Anthropic import swarms.models
from swarms.models.palm import GooglePalm
from swarms.models.petals import Petals
from swarms.models.openai import OpenAIChat
#structs #structs
from swarms.structs.workflow import Workflow from swarms.structs.workflow import Workflow
from swarms.structs.task import Task from swarms.structs.task import Task
# swarms # swarms
from swarms.swarms.dialogue_simulator import DialogueSimulator import swarms.swarms
from swarms.swarms.autoscaler import AutoScaler
from swarms.swarms.orchestrate import Orchestrator
from swarms.swarms.god_mode import GodMode
from swarms.swarms.simple_swarm import SimpleSwarm
from swarms.swarms.multi_agent_debate import MultiAgentDebate
#agents #agents
from swarms.swarms.profitpilot import ProfitPilot from swarms.swarms.profitpilot import ProfitPilot

@ -1,7 +1,6 @@
from swarms.models.anthropic import Anthropic from swarms.models.anthropic import Anthropic
# from swarms.models.palm import GooglePalm from swarms.models.palm import GooglePalm
from swarms.models.petals import Petals from swarms.models.petals import Petals
#from swarms.models.openai import OpenAIChat from swarms.models.openai import OpenAIChat
#prompts #prompts
from swarms.models.prompts.debate import * from swarms.models.prompts.debate import *

@ -1,10 +1,8 @@
# swarms # swarms
from swarms.swarms.dialogue_simulator import DialogueSimulator from swarms.swarms.dialogue_simulator import DialogueSimulator
from swarms.swarms.autoscaler import AutoScaler from swarms.swarms.autoscaler import AutoScaler
from swarms.swarms.orchestrate import Orchestrator from swarms.swarms.orchestrate import Orchestrator
from swarms.swarms.god_mode import GodMode from swarms.swarms.god_mode import GodMode
from swarms.swarms.simple_swarm import SimpleSwarm from swarms.swarms.simple_swarm import SimpleSwarm
from swarms.swarms.multi_agent_debate import MultiAgentDebate from swarms.swarms.multi_agent_debate import MultiAgentDebate, select_speaker
from swarms.swarms.groupchat import GroupChat from swarms.swarms.groupchat import GroupChat

@ -1,34 +1,45 @@
from typing import List from typing import List, Callable
from swarms import Worker from swarms import Worker
# Define a selection function
def select_speaker(step: int, agents: List[Worker]) -> int:
# This function selects the speaker in a round-robin fashion
return step % len(agents)
class MultiAgentDebate: class MultiAgentDebate:
def __init__(self, agents: List[Worker]): def __init__(
self,
agents: List[Worker],
selection_func: Callable[[int, List[Worker]], int]
):
self.agents = agents self.agents = agents
self.selection_func = selection_func
def run(self, task: str): def reset_agents(self):
results = []
for agent in self.agents: for agent in self.agents:
response = agent.run(task) agent.reset()
def inject_agent(self, agent: Worker):
self.agents.append(agent)
def run(self, task: str, max_iters: int = None):
self.reset_agents()
results = []
for i in range(max_iters or len(self.agents)):
speaker_idx = self.selection_func(i, self.agents)
speaker = self.agents[speaker_idx]
response = speaker.run(task)
results.append({ results.append({
'agent': agent.ai_name, 'agent': speaker.ai_name,
'response': response 'response': response
}) })
return results return results
# Initialize agents def update_task(self, task: str):
agents = [ self.task = task
Worker(openai_api_key="", ai_name="Optimus Prime"),
Worker(openai_api_key="", ai_name="Bumblebee"),
Worker(openai_api_key="", ai_name="Megatron")
]
# Initialize multi-agent debate
debate = MultiAgentDebate(agents)
# Run task
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
results = debate.run(task)
# Print results def format_results(self, results):
for result in results: formatted_results = "\n".join([f"Agent {result['agent']} responded: {result['response']}" for result in results])
print(f"Agent {result['agent']} responded: {result['response']}") return formatted_results

Loading…
Cancel
Save