diff --git a/swarms/structs/concurrent_workflow.py b/swarms/structs/concurrent_workflow.py index 1212d10d..0104f07f 100644 --- a/swarms/structs/concurrent_workflow.py +++ b/swarms/structs/concurrent_workflow.py @@ -3,9 +3,6 @@ from queue import Queue from typing import List from swarms.structs.agent import Agent from swarms.utils.loguru_logger import logger -from dotenv import load_dotenv -import os -from swarms.models.popular_llms import OpenAIChat class ConcurrentWorkflow: @@ -91,25 +88,25 @@ class ConcurrentWorkflow: return None -# Load the environment variables -load_dotenv() +# # Load the environment variables +# load_dotenv() -# Get the API key from the environment -api_key = os.environ.get("OPENAI_API_KEY") +# # Get the API key from the environment +# api_key = os.environ.get("OPENAI_API_KEY") -# Initialize the language model (assuming this should be done outside the class and passed to it) -llm = OpenAIChat(temperature=0.5, openai_api_key=api_key, max_tokens=4000) +# # Initialize the language model (assuming this should be done outside the class and passed to it) +# llm = OpenAIChat(temperature=0.5, openai_api_key=api_key, max_tokens=4000) -# Initialize agents -agents = [ - Agent(llm=llm, max_loops=1, autosave=True, dashboard=True) - for _ in range(1) -] +# # Initialize agents +# agents = [ +# Agent(llm=llm, max_loops=1, autosave=True, dashboard=True) +# for _ in range(1) +# ] -# Task to be executed by each agent -task = "Generate a 10,000 word blog on health and wellness." +# # Task to be executed by each agent +# task = "Generate a 10,000 word blog on health and wellness." -# Initialize and run the ConcurrentWorkflow -workflow = ConcurrentWorkflow(agents=agents, max_loops=1) -result = workflow.run(task) -logger.info(f"Final result: {result}") +# # Initialize and run the ConcurrentWorkflow +# workflow = ConcurrentWorkflow(agents=agents, max_loops=1) +# result = workflow.run(task) +# logger.info(f"Final result: {result}")