parent
fefc884477
commit
a86f5979af
@ -0,0 +1,59 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
from swarms import ToolAgent
|
||||
from swarms.utils.json_utils import base_model_to_json
|
||||
|
||||
# Model name
|
||||
model_name = "CohereForAI/c4ai-command-r-v01-4bit"
|
||||
|
||||
# Load the pre-trained model and tokenizer
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
# Load the pre-trained model and tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
# Initialize the schema for the person's information
|
||||
class APIExampleRequestSchema(BaseModel):
|
||||
endpoint: str = Field(
|
||||
..., description="The API endpoint for the example request"
|
||||
)
|
||||
method: str = Field(
|
||||
..., description="The HTTP method for the example request"
|
||||
)
|
||||
headers: dict = Field(
|
||||
..., description="The headers for the example request"
|
||||
)
|
||||
body: dict = Field(
|
||||
..., description="The body of the example request"
|
||||
)
|
||||
response: dict = Field(
|
||||
..., description="The expected response of the example request"
|
||||
)
|
||||
|
||||
# Convert the schema to a JSON string
|
||||
api_example_schema = base_model_to_json(APIExampleRequestSchema)
|
||||
# Convert the schema to a JSON string
|
||||
|
||||
# Define the task to generate a person's information
|
||||
task = (
|
||||
"Generate an example API request using this code:\n"
|
||||
)
|
||||
|
||||
# Create an instance of the ToolAgent class
|
||||
agent = ToolAgent(
|
||||
name="Command R Tool Agent",
|
||||
description="An agent that generates an API request using the Command R model.",
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
json_schema=api_example_schema,
|
||||
)
|
||||
|
||||
# Run the agent to generate the person's information
|
||||
generated_data = agent.run(task)
|
||||
|
||||
# Print the generated data
|
||||
print(f"Generated data: {generated_data}")
|
@ -0,0 +1,59 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
from swarms import ToolAgent
|
||||
from swarms.utils.json_utils import base_model_to_json
|
||||
|
||||
# Model name
|
||||
model_name = "ai21labs/Jamba-v0.1"
|
||||
|
||||
# Load the pre-trained model and tokenizer
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
# Load the pre-trained model and tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
# Initialize the schema for the person's information
|
||||
class APIExampleRequestSchema(BaseModel):
|
||||
endpoint: str = Field(
|
||||
..., description="The API endpoint for the example request"
|
||||
)
|
||||
method: str = Field(
|
||||
..., description="The HTTP method for the example request"
|
||||
)
|
||||
headers: dict = Field(
|
||||
..., description="The headers for the example request"
|
||||
)
|
||||
body: dict = Field(
|
||||
..., description="The body of the example request"
|
||||
)
|
||||
response: dict = Field(
|
||||
..., description="The expected response of the example request"
|
||||
)
|
||||
|
||||
# Convert the schema to a JSON string
|
||||
api_example_schema = base_model_to_json(APIExampleRequestSchema)
|
||||
# Convert the schema to a JSON string
|
||||
|
||||
# Define the task to generate a person's information
|
||||
task = (
|
||||
"Generate an example API request using this code:\n"
|
||||
)
|
||||
|
||||
# Create an instance of the ToolAgent class
|
||||
agent = ToolAgent(
|
||||
name="Command R Tool Agent",
|
||||
description="An agent that generates an API request using the Command R model.",
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
json_schema=api_example_schema,
|
||||
)
|
||||
|
||||
# Run the agent to generate the person's information
|
||||
generated_data = agent(task)
|
||||
|
||||
# Print the generated data
|
||||
print(f"Generated data: {generated_data}")
|
Loading…
Reference in new issue