diff --git a/README.md b/README.md index e51b43da..40f8d2c3 100644 --- a/README.md +++ b/README.md @@ -344,9 +344,48 @@ img = "playground/demos/multi_modal_chain_of_thought/eyetest.jpg" # Run the workflow on a task out = llm.run(task=task, img=img) print(out) +``` + + +### `Anthropic` +```python +# Import necessary modules and classes +from swarms.models import Anthropic + +# Initialize an instance of the Anthropic class +model = Anthropic( + anthropic_api_key="" +) +# Using the run method +completion_1 = model.run("What is the capital of France?") +print(completion_1) +# Using the __call__ method +completion_2 = model("How far is the moon from the earth?", stop=["miles", "km"]) +print(completion_2) + +``` + + +### `HuggingFaceLLM` +```python +from swarms.models import HuggingfaceLLM + +# Initialize with custom configuration +custom_config = { + "quantize": True, + "quantization_config": {"load_in_4bit": True}, + "verbose": True +} +inference = HuggingfaceLLM(model_id="NousResearch/Nous-Hermes-2-Vision-Alpha", **custom_config) + +# Generate text based on a prompt +prompt_text = "Create a list of known biggest risks of structural collapse with references" +generated_text = inference(prompt_text) +print(generated_text) ``` + --- # Features 🤖 diff --git a/docs/swarms/memory/pinecone.md b/docs/swarms/memory/pinecone.md index 11f9a018..830d10fe 100644 --- a/docs/swarms/memory/pinecone.md +++ b/docs/swarms/memory/pinecone.md @@ -1,4 +1,4 @@ -# `PineconDB` Documentation +# `PineconeDB` Documentation ## Table of Contents diff --git a/mkdocs.yml b/mkdocs.yml index d1620c27..f8fe3e76 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -106,7 +106,7 @@ nav: - Conversation: "swarms/structs/conversation.md" - swarms.memory: - Weaviate: "swarms/memory/weaviate.md" - - PineconDB: "swarms/memory/pinecone.md" + - PineconeDB: "swarms/memory/pinecone.md" - PGVectorStore: "swarms/memory/pg.md" - ShortTermMemory: "swarms/memory/short_term_memory.md" - swarms.utils: diff --git a/swarms/memory/pinecone.py b/swarms/memory/pinecone.py index f48bb627..164cb334 100644 --- a/swarms/memory/pinecone.py +++ b/swarms/memory/pinecone.py @@ -6,9 +6,9 @@ from swarms.utils.hash import str_to_hash @define -class PineconDB(VectorDatabase): +class PineconeDB(VectorDatabase): """ - PineconDB is a vector storage driver that uses Pinecone as the underlying storage engine. + PineconeDB is a vector storage driver that uses Pinecone as the underlying storage engine. Pinecone is a vector database that allows you to store, search, and retrieve high-dimensional vectors with blazing speed and low latency. It is a managed service that is easy to use and scales effortlessly, so you can @@ -34,14 +34,14 @@ class PineconDB(VectorDatabase): Creates a new index. Usage: - >>> from swarms.memory.vector_stores.pinecone import PineconDB + >>> from swarms.memory.vector_stores.pinecone import PineconeDB >>> from swarms.utils.embeddings import USEEmbedding >>> from swarms.utils.hash import str_to_hash >>> from swarms.utils.dataframe import dataframe_to_hash >>> import pandas as pd >>> - >>> # Create a new PineconDB instance: - >>> pv = PineconDB( + >>> # Create a new PineconeDB instance: + >>> pv = PineconeDB( >>> api_key="your-api-key", >>> index_name="your-index-name", >>> environment="us-west1-gcp", @@ -166,7 +166,7 @@ class PineconDB(VectorDatabase): count: Optional[int] = None, namespace: Optional[str] = None, include_vectors: bool = False, - # PineconDBStorageDriver-specific params: + # PineconeDBStorageDriver-specific params: include_metadata=True, **kwargs, ): diff --git a/tests/memory/test_pinecone.py b/tests/memory/test_pinecone.py index f43cd6ea..f385f058 100644 --- a/tests/memory/test_pinecone.py +++ b/tests/memory/test_pinecone.py @@ -1,6 +1,6 @@ import os from unittest.mock import patch -from swarms.memory.pinecone import PineconDB +from swarms.memory.pinecone import PineconeDB api_key = os.getenv("PINECONE_API_KEY") or "" @@ -9,7 +9,7 @@ def test_init(): with patch("pinecone.init") as MockInit, patch( "pinecone.Index" ) as MockIndex: - store = PineconDB( + store = PineconeDB( api_key=api_key, index_name="test_index", environment="test_env", @@ -21,7 +21,7 @@ def test_init(): def test_upsert_vector(): with patch("pinecone.init"), patch("pinecone.Index") as MockIndex: - store = PineconDB( + store = PineconeDB( api_key=api_key, index_name="test_index", environment="test_env", @@ -37,7 +37,7 @@ def test_upsert_vector(): def test_load_entry(): with patch("pinecone.init"), patch("pinecone.Index") as MockIndex: - store = PineconDB( + store = PineconeDB( api_key=api_key, index_name="test_index", environment="test_env", @@ -48,7 +48,7 @@ def test_load_entry(): def test_load_entries(): with patch("pinecone.init"), patch("pinecone.Index") as MockIndex: - store = PineconDB( + store = PineconeDB( api_key=api_key, index_name="test_index", environment="test_env", @@ -59,7 +59,7 @@ def test_load_entries(): def test_query(): with patch("pinecone.init"), patch("pinecone.Index") as MockIndex: - store = PineconDB( + store = PineconeDB( api_key=api_key, index_name="test_index", environment="test_env", @@ -72,7 +72,7 @@ def test_create_index(): with patch("pinecone.init"), patch("pinecone.Index"), patch( "pinecone.create_index" ) as MockCreateIndex: - store = PineconDB( + store = PineconeDB( api_key=api_key, index_name="test_index", environment="test_env",