parent
de1b3a1b16
commit
b148d8f48a
@ -1,82 +0,0 @@
|
||||
# workers in unison
|
||||
# kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)`
|
||||
# this needs to change, we need to specify exactly what needs to be imported
|
||||
# add typechecking, documentation, and deeper error handling
|
||||
# TODO: MANY WORKERS
|
||||
|
||||
import concurrent.futures
|
||||
import logging
|
||||
|
||||
import faiss
|
||||
|
||||
from swarms.embeddings.openai import OpenAIEmbeddings
|
||||
from swarms.swarms.swarms import HierarchicalSwarm
|
||||
from swarms.vectorstore.vectorstore import FAISS, InMemoryDocstore
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
|
||||
|
||||
class HiveMind:
|
||||
def __init__(self, openai_api_key="", num_swarms=1, max_workers=None):
|
||||
self.openai_api_key = openai_api_key
|
||||
self.num_swarms = num_swarms
|
||||
self.swarms = [HierarchicalSwarm(openai_api_key) for _ in range(num_swarms)]
|
||||
self.vectorstore = self.initialize_vectorstore()
|
||||
self.max_workers = max_workers if max_workers else min(32, num_swarms)
|
||||
|
||||
def initialize_vectorstore(self):
|
||||
try:
|
||||
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
|
||||
embedding_size = 1536
|
||||
index = faiss.IndexFlatL2(embedding_size)
|
||||
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to initialize vector store: {e}")
|
||||
raise
|
||||
|
||||
def run_swarm(self, swarm, objective):
|
||||
try:
|
||||
return swarm.run(objective)
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred in run: {e}")
|
||||
|
||||
def run(self, objective, timeout=None):
|
||||
with concurrent.futures.ThreadPoolExecutor(
|
||||
max_workers=self.max_workers
|
||||
) as executor:
|
||||
futures = {
|
||||
executor.submit(self.run_swarm, swarm, objective)
|
||||
for swarm in self.swarms
|
||||
}
|
||||
results = []
|
||||
for future in concurrent.futures.as_completed(futures, timeout=timeout):
|
||||
try:
|
||||
results.append(future.result())
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred in a swarm: {e}")
|
||||
return results
|
||||
|
||||
def add_swarm(self):
|
||||
self.swarms.append(HierarchicalSwarm(self.openai_api_key))
|
||||
|
||||
def remove_swarm(self, index):
|
||||
try:
|
||||
self.swarms.pop(index)
|
||||
except IndexError:
|
||||
logging.error(f"No swarm found at index {index}")
|
||||
|
||||
def get_progress(self):
|
||||
# this assumes that the swarms class has a get progress method
|
||||
pass
|
||||
|
||||
def cancel_swarm(self, index):
|
||||
try:
|
||||
self.swarms[index].cancel()
|
||||
except IndexError:
|
||||
logging.error(f"No swarm found at index {index}")
|
||||
|
||||
def queue_tasks(self, tasks):
|
||||
for task in tasks:
|
||||
self.run(task)
|
Before Width: | Height: | Size: 131 KiB After Width: | Height: | Size: 283 KiB |
Loading…
Reference in new issue