diff --git a/Transcript Generator_state.json b/Transcript Generator_state.json new file mode 100644 index 00000000..71f22da3 --- /dev/null +++ b/Transcript Generator_state.json @@ -0,0 +1,17 @@ +{ + "agent_id": "", + "agent_name": "Transcript Generator", + "agent_description": "Generate a transcript for a youtube video on what swarms are!", + "system_prompt": "\n You are a fully autonomous agent serving the user in automating tasks, workflows, and activities. \n Agent's use custom instructions, capabilities, and data to optimize LLMs for a more narrow set of tasks.\n \n You will have internal dialogues with yourself and or interact with the user to aid in these tasks. \n Your responses should be coherent, contextually relevant, and tailored to the task at hand.\n", + "sop": null, + "short_memory": "system: \n You are a fully autonomous agent serving the user in automating tasks, workflows, and activities. \n Agent's use custom instructions, capabilities, and data to optimize LLMs for a more narrow set of tasks.\n \n You will have internal dialogues with yourself and or interact with the user to aid in these tasks. \n Your responses should be coherent, contextually relevant, and tailored to the task at hand.\n\n\n\nHuman:: Generate a transcript for a youtube video on what swarms are!\n\n\nTranscript Generator: \nSwarms are composed of large numbers of independent individuals that collectively carry out complex behaviors. For example, an ant colony functions as a swarm - each ant follows simple rules but together the colony can build intricate nests and find food.\n\nIn artificial swarms, we try to emulate these naturally-occurring phenomena. By programming basic behaviors into agents and allowing them to interact, we can observe emergent group behaviors without centralized control. For example, groups of robots may be designed with attraction and repulsion forces to self-assemble or explore environments.\n\nSimilarly, swarms may allow optimization algorithms to explore solutions in parallel. Each program follows their own trajectory while sharing information to converge on the best result. High-level commands give a rough direction, but the specific behaviors emerge from the interactions at the local level. \n\nPotential applications of artificial swarms include self-configuring robot teams for search & rescue, intelligent routing of network packets, and distributed processing for enhanced efficiency. The decentralized nature of swarms provides robustness, scalability and adaptability surpassing individual agents. \n\nBy harnessing simple local rules and interactions, swarm systems transcend the capabilities of any single member. They provide distributed solutions to coordinate large numbers independent agents to achieve a collective purpose.\n\n\nTranscript Generator: \nSwarms are composed of large numbers of independent individuals that collectively carry out complex behaviors. For example, an ant colony functions as a swarm - each ant follows simple rules but together the colony can build intricate nests and find food.\n\nIn artificial swarms, we try to emulate these naturally-occurring phenomena. By programming basic behaviors into agents and allowing them to interact, we can observe emergent group behaviors without centralized control. For example, groups of robots may be designed with attraction and repulsion forces to self-assemble or explore environments.\n\nSimilarly, swarms may allow optimization algorithms to explore solutions in parallel. Each program follows their own trajectory while sharing information to converge on the best result. High-level commands give a rough direction, but the specific behaviors emerge from the interactions at the local level. \n\nPotential applications of artificial swarms include self-configuring robot teams for search & rescue, intelligent routing of network packets, and distributed processing for enhanced efficiency. The decentralized nature of swarms provides robustness, scalability and adaptability surpassing individual agents. \n\nBy harnessing simple local rules and interactions, swarm systems transcend the capabilities of any single member. They provide distributed solutions to coordinate large numbers independent agents to achieve a collective purpose.\n\n\nHuman:: what is your purpose\n\n", + "loop_interval": 1, + "retry_attempts": 3, + "retry_interval": 1, + "interactive": true, + "dashboard": false, + "dynamic_temperature": false, + "autosave": true, + "saved_state_path": "Transcript Generator_state.json", + "max_loops": 1 +} \ No newline at end of file diff --git a/example.py b/example.py index 9d68c71d..a51651ec 100644 --- a/example.py +++ b/example.py @@ -9,16 +9,17 @@ agent = Agent( " are!" ), llm=Anthropic(), - max_loops="auto", + max_loops=3, autosave=True, dashboard=False, streaming_on=True, verbose=True, stopping_token="", + interactive=True, ) # Run the workflow on a task -agent( +out = agent( "Generate a transcript for a youtube video on what swarms are!" - " Output a token when done." ) +print(out) \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml index ec0a079f..46a66ac3 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "swarms" -version = "4.3.7" +version = "4.5.8" description = "Swarms - Pytorch" license = "MIT" authors = ["Kye Gomez "] @@ -33,8 +33,7 @@ google-generativeai = "0.3.1" langchain = "0.1.13" langchain-core = "0.1.33" langchain-community = "0.0.29" -langsmith = "0.1.17" -langchain-openai = "0.0.5" +langchain-experimental = "0.0.55" faiss-cpu = "1.7.4" backoff = "2.2.1" datasets = "*" @@ -42,7 +41,7 @@ optimum = "1.15.0" supervision = "0.19.0" opencv-python = "4.9.0.80" diffusers = "*" -anthropic = "0.2.5" +anthropic = "0.21.3" toml = "*" pypdf = "4.1.0" accelerate = "*" @@ -64,7 +63,6 @@ sentence-transformers = "*" peft = "*" psutil = "*" timm = "*" -supervision = "*" sentry-sdk = "*" [tool.poetry.dev-dependencies] diff --git a/swarms/agents/tool_agent.py b/swarms/agents/tool_agent.py index 55733215..0de72778 100644 --- a/swarms/agents/tool_agent.py +++ b/swarms/agents/tool_agent.py @@ -2,6 +2,7 @@ from typing import Any, Optional, Callable from swarms.structs.agent import Agent from swarms.tools.format_tools import Jsonformer +from swarms.utils.loguru_logger import logger class ToolAgent(Agent): @@ -68,13 +69,14 @@ class ToolAgent(Agent): json_schema: Any = None, max_number_tokens: int = 500, parsing_function: Optional[Callable] = None, + llm: Any = None, *args, **kwargs, ): super().__init__( agent_name=name, agent_description=description, - sop=f"{name} {description} {str(json_schema)}" * args, + llm=llm, **kwargs, ) self.name = name @@ -101,33 +103,51 @@ class ToolAgent(Agent): Exception: If an error occurs during the execution of the tool agent. """ try: - self.toolagent = Jsonformer( - model=self.model, - tokenizer=self.tokenizer, - json_schema=self.json_schema, - prompt=task, - max_number_tokens=self.max_number_tokens, - *args, - **kwargs, - ) + if self.model: + logger.info(f"Running {self.name} for task: {task}") + self.toolagent = Jsonformer( + model=self.model, + tokenizer=self.tokenizer, + json_schema=self.json_schema, + llm=self.llm, + prompt=task, + max_number_tokens=self.max_number_tokens, + *args, + **kwargs, + ) + + if self.parsing_function: + out = self.parsing_function(self.toolagent()) + else: + out = self.toolagent() + + return out + elif self.llm: + logger.info(f"Running {self.name} for task: {task}") + self.toolagent = Jsonformer( + json_schema=self.json_schema, + llm=self.llm, + prompt=task, + max_number_tokens=self.max_number_tokens, + *args, + **kwargs, + ) + + if self.parsing_function: + out = self.parsing_function(self.toolagent()) + else: + out = self.toolagent() + + return out - if self.parsing_function: - out = self.parsing_function(self.toolagent()) else: - out = self.toolagent() + raise Exception( + "Either model or llm should be provided to the" + " ToolAgent" + ) - return out except Exception as error: - print(f"[Error] [ToolAgent] {error}") + logger.error( + f"Error running {self.name} for task: {task}" + ) raise error - - def __call__(self, task: str, *args, **kwargs): - """Call self as a function. - - Args: - task (str): _description_ - - Returns: - _type_: _description_ - """ - return self.run(task, *args, **kwargs) diff --git a/swarms/memory/base_vectordb.py b/swarms/memory/base_vectordb.py index 6b34d244..64893ba1 100644 --- a/swarms/memory/base_vectordb.py +++ b/swarms/memory/base_vectordb.py @@ -1,4 +1,4 @@ -from abc import ABC, abstractmethod +from abc import ABC class AbstractVectorDatabase(ABC): @@ -12,7 +12,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def connect(self): """ Connect to the database. @@ -21,7 +20,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def close(self): """ Close the database connection. @@ -30,7 +28,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def query(self, query: str): """ Execute a database query. @@ -42,7 +39,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def fetch_all(self): """ Fetch all rows from the result set. @@ -54,7 +50,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def fetch_one(self): """ Fetch one row from the result set. @@ -66,7 +61,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def add(self, doc: str): """ Add a new record to the database. @@ -79,7 +73,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def get(self, query: str): """ Get a record from the database. @@ -95,7 +88,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def update(self, doc): """ Update a record in the database. @@ -109,7 +101,6 @@ class AbstractVectorDatabase(ABC): """ - @abstractmethod def delete(self, message): """ Delete a record from the database. diff --git a/swarms/models/mistral_model_api.py b/swarms/models/mistral_model_api.py new file mode 100644 index 00000000..9b28ef42 --- /dev/null +++ b/swarms/models/mistral_model_api.py @@ -0,0 +1,10 @@ +from swarms.models.popular_llms import OpenAIChat + + +class MistralAPILLM(OpenAIChat): + def __init__(self, url): + super().__init__() + self.openai_proxy_url = url + + def __call__(self, task: str): + super().__call__(task) diff --git a/swarms/models/together.py b/swarms/models/together.py index e8f8968c..37d9d0e5 100644 --- a/swarms/models/together.py +++ b/swarms/models/together.py @@ -119,18 +119,15 @@ class TogetherLLM(AbstractLLM): ) out = response.json() - if "choices" in out and out["choices"]: - content = ( - out["choices"][0] - .get("message", {}) - .get("content", None) - ) - if self.streaming_enabled: - content = self.stream_response(content) - return content - else: - print("No valid response in 'choices'") - return None + content = ( + out["choices"][0] + .get("message", {}) + .get("content", None) + ) + if self.streaming_enabled: + content = self.stream_response(content) + + return content except Exception as error: print( diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index f35e2e04..3b917d67 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -19,16 +19,13 @@ from swarms.prompts.multi_modal_autonomous_instruction_prompt import ( ) from swarms.prompts.worker_prompt import worker_tools_sop_promp from swarms.structs.conversation import Conversation -from swarms.structs.schemas import Step from swarms.tokenizers.base_tokenizer import BaseTokenizer -from swarms.tools.exec_tool import execute_tool_by_name from swarms.tools.tool import BaseTool from swarms.utils.code_interpreter import SubprocessCodeInterpreter from swarms.utils.data_to_text import data_to_text from swarms.utils.parse_code import extract_code_from_markdown from swarms.utils.pdf_to_text import pdf_to_text from swarms.utils.token_count_tiktoken import limit_tokens_from_string -from swarms.utils.execution_sandbox import execute_code_in_sandbox # Utils @@ -207,6 +204,10 @@ class Agent: evaluator: Optional[Callable] = None, output_json: bool = False, stopping_func: Optional[Callable] = None, + custom_loop_condition: Optional[Callable] = None, + sentiment_threshold: Optional[float] = None, + custom_exit_command: Optional[str] = "exit", + sentiment_analyzer: Optional[Callable] = None, *args, **kwargs, ): @@ -262,6 +263,10 @@ class Agent: self.evaluator = evaluator self.output_json = output_json self.stopping_func = stopping_func + self.custom_loop_condition = custom_loop_condition + self.sentiment_threshold = sentiment_threshold + self.custom_exit_command = custom_exit_command + self.sentiment_analyzer = sentiment_analyzer # The max_loops will be set dynamically if the dynamic_loop if self.dynamic_loops: @@ -559,190 +564,161 @@ class Agent: ): """ Run the autonomous agent loop - - Args: - task (str): The initial task to run - - Agent: - 1. Generate a response - 2. Check stopping condition - 3. If stopping condition is met, stop - 4. If stopping condition is not met, generate a response - 5. Repeat until stopping condition is met or max_loops is reached - """ try: - # Activate Autonomous agent message self.activate_autonomous_agent() - # response = task # or combined_prompt - history = self._history(self.user_name, task) - - # If dashboard = True then print the dashboard - if self.dashboard: - self.print_dashboard(task) + if task: + self.short_memory.add( + role=self.user_name, content=task + ) loop_count = 0 - response = None - # While the max_loops is auto or the loop count is less than the max_loops while ( self.max_loops == "auto" or loop_count < self.max_loops + # or self.custom_loop_condition() ): - # Loop count loop_count += 1 self.loop_count_print(loop_count, self.max_loops) print("\n") - # Adjust temperature, comment if no work if self.dynamic_temperature_enabled: - print(colored("Adjusting temperature...", "blue")) self.dynamic_temperature() - # Preparing the prompt - task = self.agent_history_prompt(history=task) + task_prompt = ( + self.short_memory.return_history_as_string() + ) attempt = 0 - while attempt < self.retry_attempts: + success = False + while attempt < self.retry_attempts and not success: try: - if img: - response = self.llm( - task, - img, - **kwargs, - ) - print(response) - else: - response = self.llm( - task, - **kwargs, - ) - print(response) - - if self.output_json: - response = extract_code_from_markdown( - response - ) + response_args = ( + (task_prompt, *args) + if img is None + else (task_prompt, img, *args) + ) + response = self.llm(*response_args, **kwargs) + print(response) + self.short_memory.add( + role=self.agent_name, content=response + ) - # Code interpreter if self.code_interpreter: - response = extract_code_from_markdown( - response + extracted_code = ( + extract_code_from_markdown(response) ) - # Execute the code in the sandbox - response = execute_code_in_sandbox( - response - ) - response = task + response + task_prompt += extracted_code response = self.llm( - response, *args, **kwargs + task_prompt, *args, **kwargs + ) + self.short_memory.add( + role=self.agent_name, content=response ) - - # Add the response to the history - history.append(response) - - # Log each step - step = Step( - input=str(task), - task_id=str(task_id), - step_id=str(step_id), - output=str(response), - status="running", - ) if self.evaluator: evaluated_response = self.evaluator( response ) - out = ( - f"Response: {response}\nEvaluated" - f" Response: {evaluated_response}" + print( + "Evaluated Response:" + f" {evaluated_response}" ) - out = self.short_memory.add( - "Evaluator", out + self.short_memory.add( + role=self.agent_name, + content=evaluated_response, ) - # Stopping logic for agents - if self.stopping_token: - # Check if the stopping token is in the response - if self.stopping_token in response: - break - - if self.stopping_condition: - if self._check_stopping_condition( + # Sentiment analysis + if self.sentiment_analyzer: + sentiment = self.sentiment_analyzer( response - ): - break - - if self.stopping_func is not None: - if self.stopping_func(response) is True: - break - - # If the stopping condition is met then break - self.step_cache.append(step) - logging.info(f"Step: {step}") - - # If parser exists then parse the response - if self.parser: - response = self.parser(response) - - # If tools are enabled then execute the tools - if self.tools: - execute_tool_by_name( - response, - self.tools, - self.stopping_condition, + ) + print(f"Sentiment: {sentiment}") + + if sentiment > self.sentiment_threshold: + print( + f"Sentiment: {sentiment} is above" + " threshold:" + f" {self.sentiment_threshold}" + ) + elif sentiment < self.sentiment_threshold: + print( + f"Sentiment: {sentiment} is below" + " threshold:" + f" {self.sentiment_threshold}" + ) + + # print(f"Sentiment: {sentiment}") + self.short_memory.add( + role=self.agent_name, + content=sentiment, ) - # If interactive mode is enabled then print the response and get user input - if self.interactive: - print(f"AI: {response}") - history.append(f"AI: {response}") - response = input("You: ") - history.append(f"Human: {response}") - - # If interactive mode is not enabled then print the response - else: - # print(f"AI: {response}") - history.append(f"AI: {response}") - # print(response) - break + success = True # Mark as successful to exit the retry loop + except Exception as e: - logging.error( - f"Error generating response: {e}" + logger.error( + f"Attempt {attempt+1}: Error generating" + f" response: {e}" ) attempt += 1 - time.sleep(self.retry_interval) - time.sleep(self.loop_interval) - # Add the history to the memory - self.short_memory.add( - role=self.agent_name, content=history - ) + if not success: + logger.error( + "Failed to generate a valid response after" + " retry attempts." + ) + break # Exit the loop if all retry attempts fail + + # Check stopping conditions + if ( + self.stopping_token + and self.stopping_token in response + ): + break + elif ( + self.stopping_condition + and self._check_stopping_condition(response) + ): + break + elif self.stopping_func and self.stopping_func( + response + ): + break + + if self.interactive: + user_input = input("You: ") + + # User-defined exit command + if ( + user_input.lower() + == self.custom_exit_command.lower() + ): + print("Exiting as per user request.") + break - # If autosave is enabled then save the state - if self.autosave: - print( - colored( - ( - "Autosaving agent state to" - f" {self.saved_state_path}" - ), - "green", + self.short_memory.add( + role=self.user_name, content=user_input ) - ) - self.save_state(self.saved_state_path) - # If return history is enabled then return the response and history - if self.return_history: - return response, history + if self.loop_interval: + logger.info( + f"Sleeping for {self.loop_interval} seconds" + ) + time.sleep(self.loop_interval) + + if self.autosave: + logger.info("Autosaving agent state.") + self.save_state(self.saved_state_path) return response except Exception as error: - logger.error(f"Error running agent: {error}") - raise + print(f"Error running agent: {error}") + raise error def __call__(self, task: str, img: str = None, *args, **kwargs): """Call the agent @@ -751,7 +727,11 @@ class Agent: task (str): _description_ img (str, optional): _description_. Defaults to None. """ - self.run(task, img, *args, **kwargs) + try: + self.run(task, img, *args, **kwargs) + except Exception as error: + logger.error(f"Error calling agent: {error}") + raise def agent_history_prompt( self, diff --git a/swarms/structs/base_swarm.py b/swarms/structs/base_swarm.py index b23e1549..bd64dbc4 100644 --- a/swarms/structs/base_swarm.py +++ b/swarms/structs/base_swarm.py @@ -1,12 +1,14 @@ -import yaml -import json import asyncio +import json from abc import ABC from concurrent.futures import ThreadPoolExecutor, as_completed from typing import Any, Callable, Dict, List, Optional, Sequence -from swarms.utils.loguru_logger import logger + +import yaml + from swarms.structs.agent import Agent from swarms.structs.conversation import Conversation +from swarms.utils.loguru_logger import logger class AbstractSwarm(ABC): @@ -34,7 +36,7 @@ class AbstractSwarm(ABC): assign_task: Assign a task to a agent get_all_tasks: Get all tasks get_finished_tasks: Get all finished tasks - get_pending_tasks: Get all pending tasks + get_pending_tasks: Get all penPding tasks pause_agent: Pause a agent resume_agent: Resume a agent stop_agent: Stop a agent @@ -58,7 +60,8 @@ class AbstractSwarm(ABC): def __init__( self, - agents: List[Agent], + agents: List[Agent] = None, + models: List[Any] = None, max_loops: int = 200, callbacks: Optional[Sequence[callable]] = None, autosave: bool = False, @@ -73,6 +76,7 @@ class AbstractSwarm(ABC): ): """Initialize the swarm with agents""" self.agents = agents + self.models = models self.max_loops = max_loops self.callbacks = callbacks self.autosave = autosave @@ -82,6 +86,7 @@ class AbstractSwarm(ABC): self.stopping_function = stopping_function self.stopping_condition = stopping_condition self.stopping_condition_args = stopping_condition_args + self.conversation = Conversation( time_enabled=True, *args, **kwargs ) @@ -117,6 +122,29 @@ class AbstractSwarm(ABC): if autosave: self.save_to_json(metadata_filename) + # Handle logging + if self.agents: + logger.info( + f"Swarm initialized with {len(self.agents)} agents" + ) + + # Handle stopping function + if stopping_function is not None: + if not callable(stopping_function): + raise TypeError("Stopping function must be callable.") + if stopping_condition_args is None: + stopping_condition_args = {} + self.stopping_condition_args = stopping_condition_args + self.stopping_condition = stopping_condition + self.stopping_function = stopping_function + + # Handle stopping condition + if stopping_condition is not None: + if stopping_condition_args is None: + stopping_condition_args = {} + self.stopping_condition_args = stopping_condition_args + self.stopping_condition = stopping_condition + # @abstractmethod def communicate(self): """Communicate with the swarm through the orchestrator, protocols, and the universal communication layer""" @@ -124,6 +152,7 @@ class AbstractSwarm(ABC): # @abstractmethod def run(self): """Run the swarm""" + ... def __call__( self, @@ -139,7 +168,11 @@ class AbstractSwarm(ABC): Returns: _type_: _description_ """ - return self.run(task, *args, **kwargs) + try: + return self.run(task, *args, **kwargs) + except Exception as error: + logger.error(f"Error running {self.__class__.__name__}") + raise error def step(self): """Step the swarm""" diff --git a/swarms/structs/base_workflow.py b/swarms/structs/base_workflow.py index 17b98ce8..c06d9339 100644 --- a/swarms/structs/base_workflow.py +++ b/swarms/structs/base_workflow.py @@ -19,7 +19,14 @@ class BaseWorkflow(BaseStructure): """ - def __init__(self, *args, **kwargs): + def __init__( + self, + agents: List[Agent] = None, + task_pool: List[Task] = None, + models: List[Any] = None, + *args, + **kwargs, + ): super().__init__(*args, **kwargs) self.task_pool = [] self.agent_pool = [] @@ -69,13 +76,14 @@ class BaseWorkflow(BaseStructure): """ Abstract method to run the workflow. """ - raise NotImplementedError("You must implement this method") + ... def __sequential_loop(self): """ Abstract method for the sequential loop. """ # raise NotImplementedError("You must implement this method") + ... def __log(self, message: str): """ diff --git a/swarms/tokenizers/__init__.py b/swarms/tokenizers/__init__.py index 5d82440b..895c14bc 100644 --- a/swarms/tokenizers/__init__.py +++ b/swarms/tokenizers/__init__.py @@ -1,7 +1,7 @@ -from swarms.tokenizers.anthropic_tokenizer import ( - AnthropicTokenizer, - import_optional_dependency, -) +# from swarms.tokenizers.anthropic_tokenizer import ( +# AnthropicTokenizer, +# import_optional_dependency, +# ) from swarms.tokenizers.base_tokenizer import BaseTokenizer from swarms.tokenizers.openai_tokenizers import OpenAITokenizer from swarms.tokenizers.r_tokenizers import ( @@ -10,12 +10,13 @@ from swarms.tokenizers.r_tokenizers import ( Tokenizer, ) + __all__ = [ "SentencePieceTokenizer", "HuggingFaceTokenizer", "Tokenizer", "BaseTokenizer", "OpenAITokenizer", - "import_optional_dependency", - "AnthropicTokenizer", + # "import_optional_dependency", + # "AnthropicTokenizer", ] diff --git a/swarms/tools/format_tools.py b/swarms/tools/format_tools.py index 46565f76..ce760d14 100644 --- a/swarms/tools/format_tools.py +++ b/swarms/tools/format_tools.py @@ -3,12 +3,13 @@ from typing import Any, Dict, List, Union from termcolor import cprint from transformers import PreTrainedModel, PreTrainedTokenizer - +from pydantic import BaseModel from swarms.tools.logits_processor import ( NumberStoppingCriteria, OutputNumbersTokens, StringStoppingCriteria, ) +from swarms.models.base_llm import AbstractLLM GENERATION_MARKER = "|GENERATION|" @@ -35,21 +36,25 @@ class Jsonformer: def __init__( self, - model: PreTrainedModel, - tokenizer: PreTrainedTokenizer, - json_schema: Dict[str, Any], - prompt: str, + model: PreTrainedModel = None, + tokenizer: PreTrainedTokenizer = None, + json_schema: Union[Dict[str, Any], BaseModel] = None, + schemas: List[Union[Dict[str, Any], BaseModel]] = [], + prompt: str = None, *, debug: bool = False, max_array_length: int = 10, max_number_tokens: int = 6, temperature: float = 1.0, max_string_token_length: int = 10, + llm: AbstractLLM = None, ): self.model = model self.tokenizer = tokenizer self.json_schema = json_schema self.prompt = prompt + self.llm = llm + self.schemas = schemas self.number_logit_processor = OutputNumbersTokens( self.tokenizer, self.prompt @@ -88,41 +93,67 @@ class Jsonformer: Raises: ValueError: If a valid number cannot be generated after 3 iterations. """ - prompt = self.get_prompt() - self.debug("[generate_number]", prompt, is_prompt=True) - input_tokens = self.tokenizer.encode( - prompt, return_tensors="pt" - ).to(self.model.device) - response = self.model.generate( - input_tokens, - max_new_tokens=self.max_number_tokens, - num_return_sequences=1, - logits_processor=[self.number_logit_processor], - stopping_criteria=[ - NumberStoppingCriteria( - self.tokenizer, len(input_tokens[0]) + if self.model: + prompt = self.get_prompt() + self.debug("[generate_number]", prompt, is_prompt=True) + input_tokens = self.tokenizer.encode( + prompt, return_tensors="pt" + ).to(self.model.device) + + response = self.model.generate( + input_tokens, + max_new_tokens=self.max_number_tokens, + num_return_sequences=1, + logits_processor=[self.number_logit_processor], + stopping_criteria=[ + NumberStoppingCriteria( + self.tokenizer, len(input_tokens[0]) + ) + ], + temperature=temperature or self.temperature, + pad_token_id=self.tokenizer.eos_token_id, + ) + response = self.tokenizer.decode( + response[0], skip_special_tokens=True + ) + + response = response[len(prompt) :] + response = response.strip().rstrip(".") + self.debug("[generate_number]", response) + try: + return float(response) + except ValueError: + if iterations > 3: + raise ValueError( + "Failed to generate a valid number" + ) + + return self.generate_number( + temperature=self.temperature * 1.3, + iterations=iterations + 1, + ) + elif self.llm: + prompt = self.get_prompt() + self.debug("[generate_number]", prompt, is_prompt=True) + response = self.llm(prompt) + response = response[len(prompt) :] + response = response.strip().rstrip(".") + self.debug("[generate_number]", response) + try: + return float(response) + except ValueError: + if iterations > 3: + raise ValueError( + "Failed to generate a valid number" + ) + + return self.generate_number( + temperature=self.temperature * 1.3, + iterations=iterations + 1, ) - ], - temperature=temperature or self.temperature, - pad_token_id=self.tokenizer.eos_token_id, - ) - response = self.tokenizer.decode( - response[0], skip_special_tokens=True - ) - response = response[len(prompt) :] - response = response.strip().rstrip(".") - self.debug("[generate_number]", response) - try: - return float(response) - except ValueError: - if iterations > 3: - raise ValueError("Failed to generate a valid number") - - return self.generate_number( - temperature=self.temperature * 1.3, - iterations=iterations + 1, - ) + elif self.llm and self.model: + raise ValueError("Both LLM and model cannot be None") def generate_boolean(self) -> bool: """ @@ -131,71 +162,118 @@ class Jsonformer: Returns: bool: The generated boolean value. """ - prompt = self.get_prompt() - self.debug("[generate_boolean]", prompt, is_prompt=True) + if self.model: + prompt = self.get_prompt() + self.debug("[generate_boolean]", prompt, is_prompt=True) - input_tensor = self.tokenizer.encode( - prompt, return_tensors="pt" - ) - output = self.model.forward( - input_tensor.to(self.model.device) - ) - logits = output.logits[0, -1] + input_tensor = self.tokenizer.encode( + prompt, return_tensors="pt" + ) + output = self.model.forward( + input_tensor.to(self.model.device) + ) + logits = output.logits[0, -1] + + # todo: this assumes that "true" and "false" are both tokenized to a single token + # this is probably not true for all tokenizers + # this can be fixed by looking at only the first token of both "true" and "false" + true_token_id = self.tokenizer.convert_tokens_to_ids( + "true" + ) + false_token_id = self.tokenizer.convert_tokens_to_ids( + "false" + ) + + result = logits[true_token_id] > logits[false_token_id] - # todo: this assumes that "true" and "false" are both tokenized to a single token - # this is probably not true for all tokenizers - # this can be fixed by looking at only the first token of both "true" and "false" - true_token_id = self.tokenizer.convert_tokens_to_ids("true") - false_token_id = self.tokenizer.convert_tokens_to_ids("false") + self.debug("[generate_boolean]", result) - result = logits[true_token_id] > logits[false_token_id] + return result.item() - self.debug("[generate_boolean]", result) + elif self.llm: + prompt = self.get_prompt() + self.debug("[generate_boolean]", prompt, is_prompt=True) - return result.item() + output = self.llm(prompt) + + return output if output == "true" or "false" else None + + else: + raise ValueError("Both LLM and model cannot be None") def generate_string(self) -> str: - prompt = self.get_prompt() + '"' - self.debug("[generate_string]", prompt, is_prompt=True) - input_tokens = self.tokenizer.encode( - prompt, return_tensors="pt" - ).to(self.model.device) - - response = self.model.generate( - input_tokens, - max_new_tokens=self.max_string_token_length, - num_return_sequences=1, - temperature=self.temperature, - stopping_criteria=[ - StringStoppingCriteria( - self.tokenizer, len(input_tokens[0]) - ) - ], - pad_token_id=self.tokenizer.eos_token_id, - ) + if self.model: + prompt = self.get_prompt() + '"' + self.debug("[generate_string]", prompt, is_prompt=True) + input_tokens = self.tokenizer.encode( + prompt, return_tensors="pt" + ).to(self.model.device) + + response = self.model.generate( + input_tokens, + max_new_tokens=self.max_string_token_length, + num_return_sequences=1, + temperature=self.temperature, + stopping_criteria=[ + StringStoppingCriteria( + self.tokenizer, len(input_tokens[0]) + ) + ], + pad_token_id=self.tokenizer.eos_token_id, + ) - # Some models output the prompt as part of the response - # This removes the prompt from the response if it is present - if ( - len(response[0]) >= len(input_tokens[0]) - and ( - response[0][: len(input_tokens[0])] == input_tokens - ).all() - ): - response = response[0][len(input_tokens[0]) :] - if response.shape[0] == 1: - response = response[0] - - response = self.tokenizer.decode( - response, skip_special_tokens=True - ) + # Some models output the prompt as part of the response + # This removes the prompt from the response if it is present + if ( + len(response[0]) >= len(input_tokens[0]) + and ( + response[0][: len(input_tokens[0])] + == input_tokens + ).all() + ): + response = response[0][len(input_tokens[0]) :] + if response.shape[0] == 1: + response = response[0] + + response = self.tokenizer.decode( + response, skip_special_tokens=True + ) + + self.debug("[generate_string]", "|" + response + "|") + + if response.count('"') < 1: + return response + + return response.split('"')[0].strip() + + elif self.llm: + prompt = self.get_prompt() + '"' + self.debug("[generate_string]", prompt, is_prompt=True) + + response = self.llm(prompt) - self.debug("[generate_string]", "|" + response + "|") + # Some models output the prompt as part of the response + # This removes the prompt from the response if it is present + if ( + len(response[0]) >= len(input_tokens[0]) + and ( + response[0][: len(input_tokens[0])] + == input_tokens + ).all() + ): + response = response[0][len(input_tokens[0]) :] + if response.shape[0] == 1: + response = response[0] - if response.count('"') < 1: - return response + self.debug("[generate_string]", "|" + response + "|") - return response.split('"')[0].strip() + if response.count('"') < 1: + return response + + return response.split('"')[0].strip() + + else: + raise ValueError("Both LLM and model cannot be None") def generate_object( self, properties: Dict[str, Any], obj: Dict[str, Any] @@ -249,43 +327,72 @@ class Jsonformer: def generate_array( self, item_schema: Dict[str, Any], obj: Dict[str, Any] ) -> list: - for _ in range(self.max_array_length): - # forces array to have at least one element - element = self.generate_value(item_schema, obj) - obj[-1] = element - - obj.append(self.generation_marker) - input_prompt = self.get_prompt() - obj.pop() - input_tensor = self.tokenizer.encode( - input_prompt, return_tensors="pt" - ) - output = self.model.forward( - input_tensor.to(self.model.device) - ) - logits = output.logits[0, -1] + if self.model: + for _ in range(self.max_array_length): + # forces array to have at least one element + element = self.generate_value(item_schema, obj) + obj[-1] = element + + obj.append(self.generation_marker) + input_prompt = self.get_prompt() + obj.pop() + input_tensor = self.tokenizer.encode( + input_prompt, return_tensors="pt" + ) + output = self.model.forward( + input_tensor.to(self.model.device) + ) + logits = output.logits[0, -1] + + top_indices = logits.topk(30).indices + sorted_token_ids = top_indices[ + logits[top_indices].argsort(descending=True) + ] + + found_comma = False + found_close_bracket = False + + for token_id in sorted_token_ids: + decoded_token = self.tokenizer.decode(token_id) + if "," in decoded_token: + found_comma = True + break + if "]" in decoded_token: + found_close_bracket = True + break + + if found_close_bracket or not found_comma: + break - top_indices = logits.topk(30).indices - sorted_token_ids = top_indices[ - logits[top_indices].argsort(descending=True) - ] + return obj - found_comma = False - found_close_bracket = False + elif self.llm: + for _ in range(self.max_array_length): + # forces array to have at least one element + element = self.generate_value(item_schema, obj) + obj[-1] = element - for token_id in sorted_token_ids: - decoded_token = self.tokenizer.decode(token_id) - if "," in decoded_token: - found_comma = True - break - if "]" in decoded_token: - found_close_bracket = True + obj.append(self.generation_marker) + input_prompt = self.get_prompt() + obj.pop() + output = self.llm(input_prompt) + + found_comma = False + found_close_bracket = False + + for token_id in output: + decoded_token = str(token_id) + if "," in decoded_token: + found_comma = True + break + if "]" in decoded_token: + found_close_bracket = True + break + + if found_close_bracket or not found_comma: break - if found_close_bracket or not found_comma: - break - - return obj + return obj def get_prompt(self): template = """{prompt}\nOutput result in the following JSON schema format:\n{schema}\nResult: {progress}""" diff --git a/swarms/tools/tool.py b/swarms/tools/tool.py index e69de29b..27115378 100644 --- a/swarms/tools/tool.py +++ b/swarms/tools/tool.py @@ -0,0 +1,8 @@ +from langchain.tools import ( + BaseTool, + Tool, + StructuredTool, + tool, +) # noqa F401 + +__all__ = ["BaseTool", "Tool", "StructuredTool", "tool"] diff --git a/tool_agent_with_llm.py b/tool_agent_with_llm.py new file mode 100644 index 00000000..3582be21 --- /dev/null +++ b/tool_agent_with_llm.py @@ -0,0 +1,50 @@ +import os + +from dotenv import load_dotenv +from pydantic import BaseModel, Field + +from swarms import OpenAIChat, ToolAgent +from swarms.utils.json_utils import base_model_to_json + +# Load the environment variables +load_dotenv() + +# Initialize the OpenAIChat class +chat = OpenAIChat( + api_key=os.getenv("OPENAI_API"), +) + + +# Initialize the schema for the person's information +class Schema(BaseModel): + name: str = Field(..., title="Name of the person") + agent: int = Field(..., title="Age of the person") + is_student: bool = Field( + ..., title="Whether the person is a student" + ) + courses: list[str] = Field( + ..., title="List of courses the person is taking" + ) + + +# Convert the schema to a JSON string +tool_schema = base_model_to_json(Schema) + +# Define the task to generate a person's information +task = ( + "Generate a person's information based on the following schema:" +) + +# Create an instance of the ToolAgent class +agent = ToolAgent( + name="dolly-function-agent", + description="Ana gent to create a child data", + llm=chat, + json_schema=tool_schema, +) + +# Run the agent to generate the person's information +generated_data = agent(task) + +# Print the generated data +print(f"Generated data: {generated_data}")