diff --git a/pyproject.toml b/pyproject.toml index 203f5645..d739d0fa 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "swarms" -version = "2.6.2" +version = "2.6.4" description = "Swarms - Pytorch" license = "MIT" authors = ["Kye Gomez "] @@ -95,7 +95,7 @@ preview = true [tool.poetry.scripts] -swarms = "swarms.cli._cli:run_file" +swarms = "swarms.cli.run_file:run_file" diff --git a/swarms/cli/_cli.py b/swarms/cli/_cli.py index c4e67b7b..b4be4e02 100644 --- a/swarms/cli/_cli.py +++ b/swarms/cli/_cli.py @@ -59,7 +59,7 @@ def run_file(): parser.add_argument( "-z", "--logs", help="Get a deployment's logs" ) - + # Parse the arguments args = parser.parse_args() @@ -73,4 +73,3 @@ def run_file(): except Exception as e: print(f"Error executing file '{args.file_name}': {e}") sys.exit(1) - diff --git a/swarms/cli/run_file.py b/swarms/cli/run_file.py index a8cd4439..de035b1e 100644 --- a/swarms/cli/run_file.py +++ b/swarms/cli/run_file.py @@ -1,11 +1,12 @@ import sys import subprocess + def run_file(): """Run a given file. - + Usage: swarms run file_name.py - + """ if len(sys.argv) != 3 or sys.argv[1] != "run": print("Usage: swarms run file_name.py") diff --git a/swarms/memory/chroma.py b/swarms/memory/chroma.py index 6fedc6f4..e69de29b 100644 --- a/swarms/memory/chroma.py +++ b/swarms/memory/chroma.py @@ -1,106 +0,0 @@ -from abc import ABC, abstractmethod -from typing import Any, Dict, List -from chromadb.utils import embedding_functions -from httpx import RequestError -import chromadb - -from swarms.memory.base_vector_db import VectorDatabase - - -class ChromaClient(VectorDatabase): - def __init__( - self, - collection_name: str = "chromadb-collection", - model_name: str = "BAAI/bge-small-en-v1.5", - ): - try: - self.client = chromadb.Client() - self.collection_name = collection_name - self.model = None - self.collection = None - self._load_embedding_model(model_name) - self._setup_collection() - except RequestError as e: - print(f"Error setting up QdrantClient: {e}") - - def _load_embedding_model(self, model_name: str): - """ - Loads the sentence embedding model specified by the model name. - - Args: - model_name (str): The name of the model to load for generating embeddings. - """ - try: - self.model =embedding_functions.SentenceTransformerEmbeddingFunction(model_name=model_name) - except Exception as e: - print(f"Error loading embedding model: {e}") - - def _setup_collection(self): - try: - self.collection = self.client.get_collection(name=self.collection_name, embedding_function=self.model) - except Exception as e: - print(f"{e}. Creating new collection: {self.collection}") - - self.collection = self.client.create_collection(name=self.collection_name, embedding_function=self.model) - - - def add_vectors(self, docs: List[str]): - """ - Adds vector representations of documents to the Qdrant collection. - - Args: - docs (List[dict]): A list of documents where each document is a dictionary with at least a 'page_content' key. - - Returns: - OperationResponse or None: Returns the operation information if successful, otherwise None. - """ - points = [] - ids = [] - for i, doc in enumerate(docs): - try: - points.append(doc) - ids.append("id"+str(i)) - except Exception as e: - print(f"Error processing document at index {i}: {e}") - - try: - self.collection.add( - documents=points, - ids=ids - ) - except Exception as e: - print(f"Error adding vectors: {e}") - return None - - def search_vectors(self, query: str, limit: int = 2): - """ - Searches the collection for vectors similar to the query vector. - - Args: - query (str): The query string to be converted into a vector and used for searching. - limit (int): The number of search results to return. Defaults to 3. - - Returns: - SearchResult or None: Returns the search results if successful, otherwise None. - """ - try: - search_result = self.collection.query( - query_texts=query, - n_results=limit, - ) - return search_result - except Exception as e: - print(f"Error searching vectors: {e}") - return None - - def add(self, vector: Dict[str, Any], metadata: Dict[str, Any]) -> None: - pass - - def query(self, vector: Dict[str, Any], num_results: int) -> Dict[str, Any]: - pass - - def delete(self, vector_id: str) -> None: - pass - - def update(self, vector_id: str, vector: Dict[str, Any], metadata: Dict[str, Any]) -> None: - pass