Former-commit-id: 96ecbe70a1
discord-bot-framework
Kye 1 year ago
parent d2d5fc4b7d
commit bb2114831f

@ -2,14 +2,14 @@ from swarms.models import OpenAIChat
from swarms import Worker
llm = OpenAIChat(
openai_api_key="",
openai_api_key="Enter in your key",
temperature=0.5,
)
node = Worker(
llm=llm,
ai_name="Optimus Prime",
openai_api_key="",
openai_api_key="entter in your key",
ai_role="Worker in a swarm",
external_tools=None,
human_in_the_loop=False,

File diff suppressed because it is too large Load Diff

@ -1,46 +0,0 @@
openai:
api_key: REPLACE_WITH_YOUR_OPENAI_API_KEY_HERE
# azure:
# api_key: REPLACE_WITH_YOUR_AZURE_API_KEY_HERE
# base_url: REPLACE_WITH_YOUR_ENDPOINT_HERE
# deployment_name: REPLACE_WITH_YOUR_DEPLOYMENT_NAME_HERE
# api_version: "2022-12-01"
huggingface:
token: REPLACE_WITH_YOUR_HUGGINGFACE_TOKEN_HERE # required: huggingface token @ https://huggingface.co/settings/tokens
dev: false
debug: false
log_file: logs/debug.log
model: text-davinci-003 # currently only support text-davinci-003, gpt-4, we will support more open-source LLMs in the future
use_completion: true
inference_mode: hybrid # local, huggingface or hybrid, prefer hybrid
local_deployment: full # minimal, standard or full, prefer full
device: cuda:0 # cuda:id or cpu
num_candidate_models: 5
max_description_length: 100
proxy: # optional: your proxy server "http://ip:port"
http_listen:
host: 0.0.0.0 # if you use web as the client, please set `http://{LAN_IP_of_the_server}:{port}/` to `BASE_URL` of `web/src/config/index.ts`.
port: 8004
local_inference_endpoint:
host: localhost
port: 8005
logit_bias:
parse_task: 0.1
choose_model: 5
tprompt:
parse_task: >-
#1 Task Planning Stage: The AI assistant can parse user input to several tasks: [{"task": task, "id": task_id, "dep": dependency_task_id, "args": {"text": text or <GENERATED>-dep_id, "image": image_url or <GENERATED>-dep_id, "audio": audio_url or <GENERATED>-dep_id}}]. The special tag "<GENERATED>-dep_id" refer to the one generated text/image/audio in the dependency task (Please consider whether the dependency task generates resources of this type.) and "dep_id" must be in "dep" list. The "dep" field denotes the ids of the previous prerequisite tasks which generate a new resource that the current task relies on. The "args" field must in ["text", "image", "audio"], nothing else. The task MUST be selected from the following options: "token-classification", "text2text-generation", "summarization", "translation", "question-answering", "conversational", "text-generation", "sentence-similarity", "tabular-classification", "object-detection", "image-classification", "image-to-image", "image-to-text", "text-to-image", "text-to-video", "visual-question-answering", "document-question-answering", "image-segmentation", "depth-estimation", "text-to-speech", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "canny-control", "hed-control", "mlsd-control", "normal-control", "openpose-control", "canny-text-to-image", "depth-text-to-image", "hed-text-to-image", "mlsd-text-to-image", "normal-text-to-image", "openpose-text-to-image", "seg-text-to-image". There may be multiple tasks of the same type. Think step by step about all the tasks needed to resolve the user's request. Parse out as few tasks as possible while ensuring that the user request can be resolved. Pay attention to the dependencies and order among tasks. If the user input can't be parsed, you need to reply empty JSON [].
choose_model: >-
#2 Model Selection Stage: Given the user request and the parsed tasks, the AI assistant helps the user to select a suitable model from a list of models to process the user request. The assistant should focus more on the description of the model and find the model that has the most potential to solve requests and tasks. Also, prefer models with local inference endpoints for speed and stability.
response_results: >-
#4 Response Generation Stage: With the task execution logs, the AI assistant needs to describe the process and inference results.
demos_or_presteps:
parse_task: demos/demo_parse_task.json
choose_model: demos/demo_choose_model.json
response_results: demos/demo_response_results.json
prompt:
parse_task: The chat log [ {{context}} ] may contain the resources I mentioned. Now I input { {{input}} }. Pay attention to the input and output types of tasks and the dependencies between tasks.
choose_model: >-
Please choose the most suitable model from {{metas}} for the task {{task}}. The output must be in a strict JSON format: {"id": "id", "reason": "your detail reasons for the choice"}.
response_results: >-
Yes. Please first think carefully and directly answer my request based on the inference results. Some of the inferences may not always turn out to be correct and require you to make careful consideration in making decisions. Then please detail your workflow including the used models and inference results for my request in your friendly tone. Please filter out information that is not relevant to my request. Tell me the complete path or urls of files in inference results. If there is nothing in the results, please tell me you can't make it. }

@ -1,57 +0,0 @@
import tiktoken
encodings = {
"gpt-4": tiktoken.get_encoding("cl100k_base"),
"gpt-4-32k": tiktoken.get_encoding("cl100k_base"),
"gpt-3.5-turbo": tiktoken.get_encoding("cl100k_base"),
"gpt-3.5-turbo-0301": tiktoken.get_encoding("cl100k_base"),
"text-davinci-003": tiktoken.get_encoding("p50k_base"),
"text-davinci-002": tiktoken.get_encoding("p50k_base"),
"text-davinci-001": tiktoken.get_encoding("r50k_base"),
"text-curie-001": tiktoken.get_encoding("r50k_base"),
"text-babbage-001": tiktoken.get_encoding("r50k_base"),
"text-ada-001": tiktoken.get_encoding("r50k_base"),
"davinci": tiktoken.get_encoding("r50k_base"),
"curie": tiktoken.get_encoding("r50k_base"),
"babbage": tiktoken.get_encoding("r50k_base"),
"ada": tiktoken.get_encoding("r50k_base"),
}
max_length = {
"gpt-4": 8192,
"gpt-4-32k": 32768,
"gpt-3.5-turbo": 4096,
"gpt-3.5-turbo-0301": 4096,
"text-davinci-003": 4096,
"text-davinci-002": 4096,
"text-davinci-001": 2049,
"text-curie-001": 2049,
"text-babbage-001": 2049,
"text-ada-001": 2049,
"davinci": 2049,
"curie": 2049,
"babbage": 2049,
"ada": 2049,
}
def count_tokens(model_name, text):
return len(encodings[model_name].encode(text))
def get_max_context_length(model_name):
return max_length[model_name]
def get_token_ids_for_task_parsing(model_name):
text = """{"task": "text-classification", "token-classification", "text2text-generation", "summarization", "translation", "question-answering", "conversational", "text-generation", "sentence-similarity", "tabular-classification", "object-detection", "image-classification", "image-to-image", "image-to-text", "text-to-image", "visual-question-answering", "document-question-answering", "image-segmentation", "text-to-speech", "text-to-video", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "canny-control", "hed-control", "mlsd-control", "normal-control", "openpose-control", "canny-text-to-image", "depth-text-to-image", "hed-text-to-image", "mlsd-text-to-image", "normal-text-to-image", "openpose-text-to-image", "seg-text-to-image", "args", "text", "path", "dep", "id", "<GENERATED>-"}"""
res = encodings[model_name].encode(text)
res = list(set(res))
return res
def get_token_ids_for_choose_model(model_name):
text = """{"id": "reason"}"""
res = encodings[model_name].encode(text)
res = list(set(res))
return res

@ -1,890 +0,0 @@
import argparse
import logging
import os
import random
import time
import traceback
import uuid
import warnings
import numpy as np
import soundfile as sf
import torch
import torchaudio
# import flask
from flask import request, jsonify
import waitress
import yaml
from asteroid.models import BaseModel
from controlnet_aux import (
CannyDetector,
HEDdetector,
MidasDetector,
MLSDdetector,
OpenposeDetector,
)
from controlnet_aux.hed import Network
from controlnet_aux.mlsd.models.mbv2_mlsd_large import MobileV2_MLSD_Large
from controlnet_aux.open_pose.body import Body
from datasets import load_dataset
from diffusers import (
ControlNetModel,
DiffusionPipeline,
DPMSolverMultistepScheduler,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler,
)
from diffusers.utils import export_to_video, load_image
from espnet2.bin.tts_inference import Text2Speech
from PIL import Image
# from flask_cors import CORS
from torchvision import transforms
from transformers import (
AutoTokenizer,
DPTFeatureExtractor,
DPTForDepthEstimation,
MaskFormerFeatureExtractor,
MaskFormerForInstanceSegmentation,
SpeechT5ForSpeechToSpeech,
SpeechT5HifiGan,
SpeechT5Processor,
VisionEncoderDecoderModel,
ViTImageProcessor,
pipeline,
)
# logs
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/config.default.yaml")
args = parser.parse_args()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader)
# host = config["local_inference_endpoint"]["host"]
port = config["local_inference_endpoint"]["port"]
local_deployment = config["local_deployment"]
device = config.get("device", "cuda:0")
# PROXY = None
# if config["proxy"]:
# PROXY = {
# "https": config["proxy"],
# }
# app = flask.Flask(__name__)
# CORS(app)
start = time.time()
local_fold = "models"
# if args.config.endswith(".dev"):
# local_fold = "models_dev"
def load_pipes(local_deployment):
other_pipes = {}
standard_pipes = {}
controlnet_sd_pipes = {}
if local_deployment in ["full"]:
other_pipes = {
"nlpconnect/vit-gpt2-image-captioning": {
"model": VisionEncoderDecoderModel.from_pretrained(
f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"
),
"feature_extractor": ViTImageProcessor.from_pretrained(
f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"
),
"tokenizer": AutoTokenizer.from_pretrained(
f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"
),
"device": device,
},
# "Salesforce/blip-image-captioning-large": {
# "model": BlipForConditionalGeneration.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"),
# "processor": BlipProcessor.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"),
# "device": device
# },
"damo-vilab/text-to-video-ms-1.7b": {
"model": DiffusionPipeline.from_pretrained(
f"{local_fold}/damo-vilab/text-to-video-ms-1.7b",
torch_dtype=torch.float16,
variant="fp16",
),
"device": device,
},
# "facebook/maskformer-swin-large-ade": {
# "model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_fold}/facebook/maskformer-swin-large-ade"),
# "feature_extractor" : AutoFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade"),
# "device": device
# },
# "microsoft/trocr-base-printed": {
# "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"),
# "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"),
# "device": device
# },
# "microsoft/trocr-base-handwritten": {
# "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"),
# "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"),
# "device": device
# },
"JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": {
"model": BaseModel.from_pretrained(
"JorisCos/DCCRNet_Libri1Mix_enhsingle_16k"
),
"device": device,
},
"espnet/kan-bayashi_ljspeech_vits": {
"model": Text2Speech.from_pretrained(
"espnet/kan-bayashi_ljspeech_vits"
),
"device": device,
},
"lambdalabs/sd-image-variations-diffusers": {
"model": DiffusionPipeline.from_pretrained(
f"{local_fold}/lambdalabs/sd-image-variations-diffusers"
), # torch_dtype=torch.float16
"device": device,
},
# "CompVis/stable-diffusion-v1-4": {
# "model": DiffusionPipeline.from_pretrained(f"{local_fold}/CompVis/stable-diffusion-v1-4"),
# "device": device
# },
# "stabilityai/stable-diffusion-2-1": {
# "model": DiffusionPipeline.from_pretrained(f"{local_fold}/stabilityai/stable-diffusion-2-1"),
# "device": device
# },
"runwayml/stable-diffusion-v1-5": {
"model": DiffusionPipeline.from_pretrained(
f"{local_fold}/runwayml/stable-diffusion-v1-5"
),
"device": device,
},
# "microsoft/speecht5_tts":{
# "processor": SpeechT5Processor.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"),
# "model": SpeechT5ForTextToSpeech.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"),
# "vocoder": SpeechT5HifiGan.from_pretrained(f"{local_fold}/microsoft/speecht5_hifigan"),
# "embeddings_dataset": load_dataset(f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"),
# "device": device
# },
# "speechbrain/mtl-mimic-voicebank": {
# "model": WaveformEnhancement.from_hparams(source="speechbrain/mtl-mimic-voicebank", savedir="models/mtl-mimic-voicebank"),
# "device": device
# },
"microsoft/speecht5_vc": {
"processor": SpeechT5Processor.from_pretrained(
f"{local_fold}/microsoft/speecht5_vc"
),
"model": SpeechT5ForSpeechToSpeech.from_pretrained(
f"{local_fold}/microsoft/speecht5_vc"
),
"vocoder": SpeechT5HifiGan.from_pretrained(
f"{local_fold}/microsoft/speecht5_hifigan"
),
"embeddings_dataset": load_dataset(
f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"
),
"device": device,
},
# "julien-c/wine-quality": {
# "model": joblib.load(cached_download(hf_hub_url("julien-c/wine-quality", "sklearn_model.joblib")))
# },
# "facebook/timesformer-base-finetuned-k400": {
# "processor": AutoImageProcessor.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"),
# "model": TimesformerForVideoClassification.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"),
# "device": device
# },
"facebook/maskformer-swin-base-coco": {
"feature_extractor": MaskFormerFeatureExtractor.from_pretrained(
f"{local_fold}/facebook/maskformer-swin-base-coco"
),
"model": MaskFormerForInstanceSegmentation.from_pretrained(
f"{local_fold}/facebook/maskformer-swin-base-coco"
),
"device": device,
},
"Intel/dpt-hybrid-midas": {
"model": DPTForDepthEstimation.from_pretrained(
f"{local_fold}/Intel/dpt-hybrid-midas", low_cpu_mem_usage=True
),
"feature_extractor": DPTFeatureExtractor.from_pretrained(
f"{local_fold}/Intel/dpt-hybrid-midas"
),
"device": device,
},
}
if local_deployment in ["full", "standard"]:
standard_pipes = {
# "superb/wav2vec2-base-superb-ks": {
# "model": pipeline(task="audio-classification", model=f"{local_fold}/superb/wav2vec2-base-superb-ks"),
# "device": device
# },
"openai/whisper-base": {
"model": pipeline(
task="automatic-speech-recognition",
model=f"{local_fold}/openai/whisper-base",
),
"device": device,
},
"microsoft/speecht5_asr": {
"model": pipeline(
task="automatic-speech-recognition",
model=f"{local_fold}/microsoft/speecht5_asr",
),
"device": device,
},
"Intel/dpt-large": {
"model": pipeline(
task="depth-estimation", model=f"{local_fold}/Intel/dpt-large"
),
"device": device,
},
# "microsoft/beit-base-patch16-224-pt22k-ft22k": {
# "model": pipeline(task="image-classification", model=f"{local_fold}/microsoft/beit-base-patch16-224-pt22k-ft22k"),
# "device": device
# },
"facebook/detr-resnet-50-panoptic": {
"model": pipeline(
task="image-segmentation",
model=f"{local_fold}/facebook/detr-resnet-50-panoptic",
),
"device": device,
},
"facebook/detr-resnet-101": {
"model": pipeline(
task="object-detection",
model=f"{local_fold}/facebook/detr-resnet-101",
),
"device": device,
},
# "openai/clip-vit-large-patch14": {
# "model": pipeline(task="zero-shot-image-classification", model=f"{local_fold}/openai/clip-vit-large-patch14"),
# "device": device
# },
"google/owlvit-base-patch32": {
"model": pipeline(
task="zero-shot-object-detection",
model=f"{local_fold}/google/owlvit-base-patch32",
),
"device": device,
},
# "microsoft/DialoGPT-medium": {
# "model": pipeline(task="conversational", model=f"{local_fold}/microsoft/DialoGPT-medium"),
# "device": device
# },
# "bert-base-uncased": {
# "model": pipeline(task="fill-mask", model=f"{local_fold}/bert-base-uncased"),
# "device": device
# },
# "deepset/roberta-base-squad2": {
# "model": pipeline(task = "question-answering", model=f"{local_fold}/deepset/roberta-base-squad2"),
# "device": device
# },
# "facebook/bart-large-cnn": {
# "model": pipeline(task="summarization", model=f"{local_fold}/facebook/bart-large-cnn"),
# "device": device
# },
# "google/tapas-base-finetuned-wtq": {
# "model": pipeline(task="table-question-answering", model=f"{local_fold}/google/tapas-base-finetuned-wtq"),
# "device": device
# },
# "distilbert-base-uncased-finetuned-sst-2-english": {
# "model": pipeline(task="text-classification", model=f"{local_fold}/distilbert-base-uncased-finetuned-sst-2-english"),
# "device": device
# },
# "gpt2": {
# "model": pipeline(task="text-generation", model="gpt2"),
# "device": device
# },
# "mrm8488/t5-base-finetuned-question-generation-ap": {
# "model": pipeline(task="text2text-generation", model=f"{local_fold}/mrm8488/t5-base-finetuned-question-generation-ap"),
# "device": device
# },
# "Jean-Baptiste/camembert-ner": {
# "model": pipeline(task="token-classification", model=f"{local_fold}/Jean-Baptiste/camembert-ner", aggregation_strategy="simple"),
# "device": device
# },
# "t5-base": {
# "model": pipeline(task="translation", model=f"{local_fold}/t5-base"),
# "device": device
# },
"impira/layoutlm-document-qa": {
"model": pipeline(
task="document-question-answering",
model=f"{local_fold}/impira/layoutlm-document-qa",
),
"device": device,
},
"ydshieh/vit-gpt2-coco-en": {
"model": pipeline(
task="image-to-text", model=f"{local_fold}/ydshieh/vit-gpt2-coco-en"
),
"device": device,
},
"dandelin/vilt-b32-finetuned-vqa": {
"model": pipeline(
task="visual-question-answering",
model=f"{local_fold}/dandelin/vilt-b32-finetuned-vqa",
),
"device": device,
},
}
if local_deployment in ["full", "standard", "minimal"]:
controlnet = ControlNetModel.from_pretrained(
f"{local_fold}/lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16
)
controlnetpipe = StableDiffusionControlNetPipeline.from_pretrained(
f"{local_fold}/runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
)
def mlsd_control_network():
model = MobileV2_MLSD_Large()
model.load_state_dict(
torch.load(
f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/mlsd_large_512_fp32.pth"
),
strict=True,
)
return MLSDdetector(model)
hed_network = Network(
f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/network-bsds500.pth"
)
controlnet_sd_pipes = {
"openpose-control": {
"model": OpenposeDetector(
Body(
f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/body_pose_model.pth"
)
)
},
"mlsd-control": {"model": mlsd_control_network()},
"hed-control": {"model": HEDdetector(hed_network)},
"scribble-control": {"model": HEDdetector(hed_network)},
"midas-control": {
"model": MidasDetector(
model_path=f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
)
},
"canny-control": {"model": CannyDetector()},
"lllyasviel/sd-controlnet-canny": {
"control": controlnet,
"model": controlnetpipe,
"device": device,
},
"lllyasviel/sd-controlnet-depth": {
"control": ControlNetModel.from_pretrained(
f"{local_fold}/lllyasviel/sd-controlnet-depth",
torch_dtype=torch.float16,
),
"model": controlnetpipe,
"device": device,
},
"lllyasviel/sd-controlnet-hed": {
"control": ControlNetModel.from_pretrained(
f"{local_fold}/lllyasviel/sd-controlnet-hed",
torch_dtype=torch.float16,
),
"model": controlnetpipe,
"device": device,
},
"lllyasviel/sd-controlnet-mlsd": {
"control": ControlNetModel.from_pretrained(
f"{local_fold}/lllyasviel/sd-controlnet-mlsd",
torch_dtype=torch.float16,
),
"model": controlnetpipe,
"device": device,
},
"lllyasviel/sd-controlnet-openpose": {
"control": ControlNetModel.from_pretrained(
f"{local_fold}/lllyasviel/sd-controlnet-openpose",
torch_dtype=torch.float16,
),
"model": controlnetpipe,
"device": device,
},
"lllyasviel/sd-controlnet-scribble": {
"control": ControlNetModel.from_pretrained(
f"{local_fold}/lllyasviel/sd-controlnet-scribble",
torch_dtype=torch.float16,
),
"model": controlnetpipe,
"device": device,
},
"lllyasviel/sd-controlnet-seg": {
"control": ControlNetModel.from_pretrained(
f"{local_fold}/lllyasviel/sd-controlnet-seg",
torch_dtype=torch.float16,
),
"model": controlnetpipe,
"device": device,
},
}
pipes = {**standard_pipes, **other_pipes, **controlnet_sd_pipes}
return pipes
pipes = load_pipes(local_deployment)
end = time.time()
during = end - start
print(f"[ ready ] {during}s")
@app.route("/running", methods=["GET"])
def running():
return jsonify({"running": True})
@app.route("/status/<path:model_id>", methods=["GET"])
def status(model_id):
disabled_models = [
"microsoft/trocr-base-printed",
"microsoft/trocr-base-handwritten",
]
if model_id in pipes.keys() and model_id not in disabled_models:
print(f"[ check {model_id} ] success")
return jsonify({"loaded": True})
else:
print(f"[ check {model_id} ] failed")
return jsonify({"loaded": False})
@app.route("/models/<path:model_id>", methods=["POST"])
def models(model_id):
while "using" in pipes[model_id] and pipes[model_id]["using"]:
print(f"[ inference {model_id} ] waiting")
time.sleep(0.1)
pipes[model_id]["using"] = True
print(f"[ inference {model_id} ] start")
start = time.time()
pipe = pipes[model_id]["model"]
if "device" in pipes[model_id]:
try:
pipe.to(pipes[model_id]["device"])
except BaseException:
pipe.device = torch.device(pipes[model_id]["device"])
pipe.model.to(pipes[model_id]["device"])
result = None
try:
# text to video
if model_id == "damo-vilab/text-to-video-ms-1.7b":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config
)
# pipe.enable_model_cpu_offload()
prompt = request.get_json()["text"]
video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames
video_path = export_to_video(video_frames)
file_name = str(uuid.uuid4())[:4]
os.system(
f"LD_LIBRARY_PATH=/usr/local/lib /usr/local/bin/ffmpeg -i {video_path} -vcodec libx264 public/videos/{file_name}.mp4"
)
result = {"path": f"/videos/{file_name}.mp4"}
# controlnet
if model_id.startswith("lllyasviel/sd-controlnet-"):
pipe.controlnet.to("cpu")
pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"])
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
control_image = load_image(request.get_json()["img_url"])
# generator = torch.manual_seed(66)
out_image: Image = pipe(
request.get_json()["text"], num_inference_steps=20, image=control_image
).images[0]
file_name = str(uuid.uuid4())[:4]
out_image.save(f"public/images/{file_name}.png")
result = {"path": f"/images/{file_name}.png"}
if model_id.endswith("-control"):
image = load_image(request.get_json()["img_url"])
if "scribble" in model_id:
control = pipe(image, scribble=True)
elif "canny" in model_id:
control = pipe(image, low_threshold=100, high_threshold=200)
else:
control = pipe(image)
file_name = str(uuid.uuid4())[:4]
control.save(f"public/images/{file_name}.png")
result = {"path": f"/images/{file_name}.png"}
# image to image
if model_id == "lambdalabs/sd-image-variations-diffusers":
im = load_image(request.get_json()["img_url"])
file_name = str(uuid.uuid4())[:4]
with open(f"public/images/{file_name}.png", "wb") as f:
f.write(request.data)
tform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize(
(224, 224),
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=False,
),
transforms.Normalize(
[0.48145466, 0.4578275, 0.40821073],
[0.26862954, 0.26130258, 0.27577711],
),
]
)
inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0)
out = pipe(inp, guidance_scale=3)
out["images"][0].save(f"public/images/{file_name}.jpg")
result = {"path": f"/images/{file_name}.jpg"}
# image to text
if model_id == "Salesforce/blip-image-captioning-large":
raw_image = load_image(request.get_json()["img_url"]).convert("RGB")
text = request.get_json()["text"]
inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(
pipes[model_id]["device"]
)
out = pipe.generate(**inputs)
caption = pipes[model_id]["processor"].decode(
out[0], skip_special_tokens=True
)
result = {"generated text": caption}
if model_id == "ydshieh/vit-gpt2-coco-en":
img_url = request.get_json()["img_url"]
generated_text = pipe(img_url)[0]["generated_text"]
result = {"generated text": generated_text}
if model_id == "nlpconnect/vit-gpt2-image-captioning":
image = load_image(request.get_json()["img_url"]).convert("RGB")
pixel_values = pipes[model_id]["feature_extractor"](
images=image, return_tensors="pt"
).pixel_values
pixel_values = pixel_values.to(pipes[model_id]["device"])
generated_ids = pipe.generate(
pixel_values, **{"max_length": 200, "num_beams": 1}
)
generated_text = pipes[model_id]["tokenizer"].batch_decode(
generated_ids, skip_special_tokens=True
)[0]
result = {"generated text": generated_text}
# image to text: OCR
if (
model_id == "microsoft/trocr-base-printed"
or model_id == "microsoft/trocr-base-handwritten"
):
image = load_image(request.get_json()["img_url"]).convert("RGB")
pixel_values = pipes[model_id]["processor"](
image, return_tensors="pt"
).pixel_values
pixel_values = pixel_values.to(pipes[model_id]["device"])
generated_ids = pipe.generate(pixel_values)
generated_text = pipes[model_id]["processor"].batch_decode(
generated_ids, skip_special_tokens=True
)[0]
result = {"generated text": generated_text}
# text to image
if model_id == "runwayml/stable-diffusion-v1-5":
file_name = str(uuid.uuid4())[:4]
text = request.get_json()["text"]
out = pipe(prompt=text)
out["images"][0].save(f"public/images/{file_name}.jpg")
result = {"path": f"/images/{file_name}.jpg"}
# object detection
if (
model_id == "google/owlvit-base-patch32"
or model_id == "facebook/detr-resnet-101"
):
img_url = request.get_json()["img_url"]
open_types = [
"cat",
"couch",
"person",
"car",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
]
result = pipe(img_url, candidate_labels=open_types)
# VQA
if model_id == "dandelin/vilt-b32-finetuned-vqa":
question = request.get_json()["text"]
img_url = request.get_json()["img_url"]
result = pipe(question=question, image=img_url)
# DQA
if model_id == "impira/layoutlm-document-qa":
question = request.get_json()["text"]
img_url = request.get_json()["img_url"]
result = pipe(img_url, question)
# depth-estimation
if model_id == "Intel/dpt-large":
output = pipe(request.get_json()["img_url"])
image = output["depth"]
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large":
image = load_image(request.get_json()["img_url"])
inputs = pipes[model_id]["feature_extractor"](
images=image, return_tensors="pt"
)
with torch.no_grad():
outputs = pipe(**inputs)
predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
image = Image.fromarray(formatted)
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
# TTS
if model_id == "espnet/kan-bayashi_ljspeech_vits":
text = request.get_json()["text"]
wav = pipe(text)["wav"]
name = str(uuid.uuid4())[:4]
sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16")
result = {"path": f"/audios/{name}.wav"}
if model_id == "microsoft/speecht5_tts":
text = request.get_json()["text"]
inputs = pipes[model_id]["processor"](text=text, return_tensors="pt")
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
speaker_embeddings = (
torch.tensor(embeddings_dataset[7306]["xvector"])
.unsqueeze(0)
.to(pipes[model_id]["device"])
)
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
speech = pipe.generate_speech(
inputs["input_ids"].to(pipes[model_id]["device"]),
speaker_embeddings,
vocoder=pipes[model_id]["vocoder"],
)
name = str(uuid.uuid4())[:4]
sf.write(
f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000
)
result = {"path": f"/audios/{name}.wav"}
# ASR
if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr":
audio_url = request.get_json()["audio_url"]
result = {"text": pipe(audio_url)["text"]}
# audio to audio
if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k":
audio_url = request.get_json()["audio_url"]
wav, sr = torchaudio.load(audio_url)
with torch.no_grad():
result_wav = pipe(wav.to(pipes[model_id]["device"]))
name = str(uuid.uuid4())[:4]
sf.write(
f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr
)
result = {"path": f"/audios/{name}.wav"}
if model_id == "microsoft/speecht5_vc":
audio_url = request.get_json()["audio_url"]
wav, sr = torchaudio.load(audio_url)
inputs = pipes[model_id]["processor"](
audio=wav, sampling_rate=sr, return_tensors="pt"
)
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
speaker_embeddings = torch.tensor(
embeddings_dataset[7306]["xvector"]
).unsqueeze(0)
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
speech = pipe.generate_speech(
inputs["input_ids"].to(pipes[model_id]["device"]),
speaker_embeddings,
vocoder=pipes[model_id]["vocoder"],
)
name = str(uuid.uuid4())[:4]
sf.write(
f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000
)
result = {"path": f"/audios/{name}.wav"}
# segmentation
if model_id == "facebook/detr-resnet-50-panoptic":
result = []
segments = pipe(request.get_json()["img_url"])
image = load_image(request.get_json()["img_url"])
colors = []
for i in range(len(segments)):
colors.append(
(
random.randint(100, 255),
random.randint(100, 255),
random.randint(100, 255),
50,
)
)
for segment in segments:
mask = segment["mask"]
mask = mask.convert("L")
layer = Image.new("RGBA", mask.size, colors[i])
image.paste(layer, (0, 0), mask)
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
if (
model_id == "facebook/maskformer-swin-base-coco"
or model_id == "facebook/maskformer-swin-large-ade"
):
image = load_image(request.get_json()["img_url"])
inputs = pipes[model_id]["feature_extractor"](
images=image, return_tensors="pt"
).to(pipes[model_id]["device"])
outputs = pipe(**inputs)
result = pipes[model_id][
"feature_extractor"
].post_process_panoptic_segmentation(
outputs, target_sizes=[image.size[::-1]]
)[
0
]
predicted_panoptic_map = result["segmentation"].cpu().numpy()
predicted_panoptic_map = Image.fromarray(
predicted_panoptic_map.astype(np.uint8)
)
name = str(uuid.uuid4())[:4]
predicted_panoptic_map.save(f"public/images/{name}.jpg")
result = {"path": f"/images/{name}.jpg"}
except Exception as e:
print(e)
traceback.print_exc()
result = {"error": {"message": "Error when running the model inference."}}
if "device" in pipes[model_id]:
try:
pipe.to("cpu")
torch.cuda.empty_cache()
except BaseException:
pipe.device = torch.device("cpu")
pipe.model.to("cpu")
torch.cuda.empty_cache()
pipes[model_id]["using"] = False
if result is None:
result = {"error": {"message": "model not found"}}
end = time.time()
during = end - start
print(f"[ complete {model_id} ] {during}s")
print(f"[ result {model_id} ] {result}")
return jsonify(result)
if __name__ == "__main__":
# temp folders
if not os.path.exists("public/audios"):
os.makedirs("public/audios")
if not os.path.exists("public/images"):
os.makedirs("public/images")
if not os.path.exists("public/videos"):
os.makedirs("public/videos")
waitress.serve(app, host="0.0.0.0", port=port)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,15 @@
class PromptRefiner:
def __init__(
self,
system_prompt: str,
llm
):
super().__init__()
self.system_prompt = system_prompt
self.llm = llm
def run(self, task: str):
refine = self.llm(f"System Prompt: {self.system_prompt} Current task: {task}")
return refine
Loading…
Cancel
Save