Merge pull request #1 from ascender1729/codex/remove-unwanted-files-from-pr

Remove unwanted files
pull/855/head
Pavan Kumar 4 days ago committed by GitHub
commit bb3d5dbcca
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -1,121 +0,0 @@
"""
Example: Fully Save and Load an Agent (with Conversation History)
This demonstrates how to:
1. Auto-save conversation messages to JSON
2. Save the full Agent state
3. Load both the Agent state and the conversation back into a fresh Agent
"""
import os
from swarms.structs.agent import Agent
# Helper to safely print type or None for agent properties
def print_agent_properties(agent, label):
print(f"\n--- {label} ---")
for prop in ["tokenizer", "long_term_memory", "logger_handler", "agent_output", "executor"]:
value = getattr(agent, prop, None)
print(f"{prop}: {type(value)}")
# Helper to extract the conversation history list
def get_conversation_history(agent):
conv = getattr(agent, "conversation", None) or getattr(agent, "short_memory", None)
return getattr(conv, "conversation_history", None)
# Robust helper to reload conversation from JSON into the correct attribute
def reload_conversation_from_json(agent, filepath):
conv = getattr(agent, "conversation", None) or getattr(agent, "short_memory", None)
if conv and hasattr(conv, "load_from_json"):
conv.load_from_json(filepath)
# --- 1. Setup: Create and configure an agent with auto-save conversation ---
agent = Agent(
agent_name="test",
user_name="test_user",
system_prompt="This is a test agent",
max_loops=1,
context_length=200000,
autosave=True,
verbose=True,
artifacts_on=True,
artifacts_output_path="test",
artifacts_file_extension=".txt",
conversation_kwargs={
"auto_save": True,
"save_as_json_bool": True,
"save_filepath": "test_conversation_history.json"
}
)
# --- 2. Interact to populate conversation ---
agent.run(task="hello")
agent.run(task="What is your purpose?")
agent.run(task="Tell me a joke.")
agent.run(task="Summarize our conversation so far.")
# --- 3. Inspect before saving ---
print_agent_properties(agent, "BEFORE SAVE")
print("\nConversation history BEFORE SAVE:", get_conversation_history(agent))
# --- 4. Save the agent state (conversation JSON was auto-saved under workspace) ---
state_path = os.path.join(agent.workspace_dir, "test_state.json")
agent.save(state_path)
# --- 5. Ensure the conversation JSON file is saved and print its path and contents ---
json_path = os.path.join(agent.workspace_dir, "test_conversation_history.json")
if hasattr(agent, "short_memory") and hasattr(agent.short_memory, "save_as_json"):
agent.short_memory.save_as_json(json_path)
if os.path.exists(json_path):
print(f"\n[CHECK] Conversation JSON file found: {json_path}")
with open(json_path, "r") as f:
json_data = f.read()
print("[CHECK] JSON file contents:\n", json_data)
else:
print(f"[WARN] Conversation JSON file not found: {json_path}")
# --- 6. Simulate fresh environment ---
del agent
# --- 7. Load: Restore the agent configuration ---
agent2 = Agent(agent_name="test")
agent2.load(state_path)
# --- 8. Load: Restore the conversation history from the workspace directory into a new Conversation object ---
from swarms.structs.conversation import Conversation
conversation_loaded = Conversation()
if os.path.exists(json_path):
conversation_loaded.load_from_json(json_path)
print("\n[CHECK] Loaded conversation from JSON into new Conversation object:")
print(conversation_loaded.conversation_history)
else:
print(f"[WARN] Conversation JSON file not found for loading: {json_path}")
# --- 9. Assign loaded conversation to agent2 and check ---
agent2.short_memory = conversation_loaded
print("\n[CHECK] Agent2 conversation history after assigning loaded conversation:", get_conversation_history(agent2))
# --- 10. Inspect after loading ---
print_agent_properties(agent2, "AFTER LOAD")
print("\nConversation history AFTER LOAD:", get_conversation_history(agent2))
# --- 11. Confirm the agent can continue ---
result = agent2.run(task="What is 2+2?")
print("\nAgent2 run result:", result)
# --- 12. Cleanup test files ---
print(f"\n[INFO] Test complete. Conversation JSON and agent state files are available for inspection:")
print(f" Conversation JSON: {json_path}")
print(f" Agent state: {state_path}")
print("You can open and inspect these files to verify the agent's memory persistence.")
# Do NOT delete files automatically
# for path in (state_path, json_path):
# try:
# os.remove(path)
# except OSError:
# pass
# --- 13. Test if agent2 remembers the previous conversation ---
print("\n[TEST] Checking if agent2 remembers the previous conversation after reload...")
probe = agent2.run(task="What did I ask you to do earlier?")
print("\nAgent2 memory probe result:", probe)

@ -1,62 +0,0 @@
"""
Non-Serializable Properties Handler for Agent
This module provides helper functions to save and restore non-serializable properties
(tokenizer, long_term_memory, logger_handler, agent_output, executor) for the Agent class.
Usage:
from swarms.structs.agent_non_serializable import restore_non_serializable_properties
restore_non_serializable_properties(agent)
"""
from concurrent.futures import ThreadPoolExecutor
import logging
# Dummy/placeholder for long_term_memory and agent_output restoration
class DummyLongTermMemory:
def __init__(self):
self.memory = []
def query(self, *args, **kwargs):
# Return an empty list or a default value to avoid errors
return []
def save(self, path):
# Optionally implement a no-op save for compatibility
pass
class DummyAgentOutput:
def __init__(self):
self.output = None
def restore_non_serializable_properties(agent):
"""
Restore non-serializable properties for the Agent instance after loading.
This should be called after loading agent state from disk.
"""
# Restore tokenizer using LiteLLM if available
agent.tokenizer = None
try:
from swarms.utils.litellm_tokenizer import count_tokens
agent.tokenizer = count_tokens # Assign the function as a tokenizer interface
except Exception:
agent.tokenizer = None
# Restore long_term_memory (dummy for demo, replace with real backend as needed)
if getattr(agent, "long_term_memory", None) is None or not hasattr(agent.long_term_memory, "query"):
agent.long_term_memory = DummyLongTermMemory()
# Restore logger_handler
try:
agent.logger_handler = logging.StreamHandler()
except Exception:
agent.logger_handler = None
# Restore agent_output (dummy for demo, replace with real backend as needed)
agent.agent_output = DummyAgentOutput()
# Restore executor
try:
agent.executor = ThreadPoolExecutor()
except Exception:
agent.executor = None
return agent
Loading…
Cancel
Save