@ -32,21 +32,20 @@ Multi-agent architectures leverage these communication patterns to ensure that a
| Graph Workflow | Agents collaborate in a directed acyclic graph (DAG) format to manage dependencies and parallel tasks. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/graph_workflow/) | AI-driven software development pipelines, complex project management |
| Group Chat | Agents engage in a chat-like interaction to reach decisions collaboratively. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/group_chat/) | Real-time collaborative decision-making, contract negotiations |
| Interactive Group Chat | Enhanced group chat with dynamic speaker selection and interaction patterns. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/interactive_groupchat/) | Advanced collaborative decision-making, dynamic team coordination |
| Agent Registry | A centralized registry where agents are stored, retrieved, and invoked dynamically. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/agent_registry/) | Dynamic agent management, evolving recommendation engines |
| SpreadSheet | Manages tasks at scale, tracking agent outputs in a structured format like CSV files. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/spreadsheet_swarm/) | Large-scale marketing analytics, financial audits |
| Router | Routes and chooses the architecture based on the task requirements and available agents. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/swarm_router/) | Dynamic task routing, adaptive architecture selection, optimized agent allocation |
| Heavy | High-performance architecture for handling intensive computational tasks with multiple agents. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/heavy_swarm/) | Large-scale data processing, intensive computational workflows |
| Deep Research | Specialized architecture for conducting in-depth research tasks across multiple domains. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/deep_research_swarm/) | Academic research, market analysis, comprehensive data investigation |
| De-Hallucination | Architecture designed to reduce and eliminate hallucinations in AI outputs through consensus. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/de_hallucination_swarm/) | Fact-checking, content verification, reliable information generation |
| Council as Judge | Multiple agents act as a council to evaluate and judge outputs or decisions. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/council_of_judges/) | Quality assessment, decision validation, peer review processes |
| MALT | Specialized architecture for complex language processing tasks across multiple agents. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/malt/) | Natural language processing, translation, content generation |
| Majority Voting | Agents vote on decisions with the majority determining the final outcome. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/majorityvoting/) | Democratic decision-making, consensus building, error reduction |
| Round Robin | Tasks are distributed cyclically among agents in a rotating order. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/round_robin_swarm/) | Load balancing, fair task distribution, resource optimization |
| Auto-Builder | Automatically constructs and configures multi-agent systems based on requirements. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/auto_swarm_builder/) | Dynamic system creation, adaptive architectures, rapid prototyping |
| Hybrid Hierarchical Cluster | Combines hierarchical and peer-to-peer communication patterns for complex workflows. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/hhcs/) | Complex enterprise workflows, multi-department coordination |
| Election | Agents participate in democratic voting processes to select leaders or make collective decisions. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/election_swarm/) | Democratic governance, consensus building, leadership selection |
| Tree | Hierarchical tree structure for organizing agents in parent-child relationships. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/tree_swarm/) | Organizational hierarchies, decision trees, taxonomic classification |
| Batched Grid Workflow | Executes tasks in a batched grid format, where each agent processes a different task simultaneously in parallel. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/batched_grid_workflow/) | Parallel task processing, batch operations, grid-based task distribution |
| LLM Council | Orchestrates multiple specialized LLM agents to collaboratively answer queries through structured peer review and synthesis. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/llm_council/) | Multi-model evaluation, peer review systems, collaborative AI decision-making |
| Debate with Judge | A debate architecture where two agents (Pro and Con) debate a topic, with a Judge agent evaluating arguments and providing refined synthesis over multiple rounds. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/debate_with_judge/) | Argument analysis, decision refinement, structured debates, iterative improvement |
| Self MoA Seq | Sequential self-mixture of agents that generates multiple candidate responses and synthesizes them sequentially using a sliding window approach. | [Learn More](https://docs.swarms.world/en/latest/swarms/structs/self_moa_seq/) | High-quality response generation, ensemble methods, sequential synthesis |
Multi-agent orchestration pattern that executes tasks in a batched grid format, where each agent processes different tasks simultaneously. Provides structured parallel processing with conversation state management.
A centralized registry system where agents are stored, retrieved, and invoked dynamically. The registry maintains metadata about agent capabilities, availability, and performance metrics, enabling intelligent agent selection and management.
**Use Cases:**
- Dynamic agent management in large-scale systems
- Evolving recommendation engines that adapt agent selection
Ensemble method that generates multiple candidate responses from a single high-performing model and synthesizes them sequentially using a sliding window approach. Keeps context within bounds while leveraging diversity across samples.
Orchestrates multiple specialized LLM agents to collaboratively answer queries through structured peer review and synthesis. Different models evaluate and rank each other's work, often selecting responses from other models as superior.
Debate architecture with self-refinement through a judge agent, enabling Pro and Con agents to debate a topic with iterative refinement. The judge evaluates arguments and provides synthesis for progressive improvement.
Orchestrates multiple swarms in sequential or parallel flow patterns with thread-safe operations and flow validation. Provides comprehensive swarm management and coordination capabilities.