Merge branch 'kyegomez:master' into master

pull/505/head
evelynmitchell 7 months ago committed by GitHub
commit bba64db2d4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -0,0 +1,27 @@
import os
import threading
from swarms.agents.multion_wrapper import MultiOnAgent
def run_model(api_key):
model = MultiOnAgent(api_key=api_key, max_steps=500, url="https://x.com")
out = model.run(
"""
click on the 'Tweet' button to start a new tweet and post it saying: $pip3 install swarms
"""
)
print(out)
# Create a list to store the threads
threads = []
# Run 100 instances using multithreading
for _ in range(10):
api_key = os.getenv("MULTION_API_KEY")
thread = threading.Thread(target=run_model, args=(api_key,))
thread.start()
threads.append(thread)
# Wait for all threads to finish
for thread in threads:
thread.join()

@ -16,7 +16,7 @@
<p align="center">
<a href="https://twitter.com/swarms_corp/">🐦 Twitter</a>
<span>&nbsp;&nbsp;&nbsp;&nbsp;</span>
<a href="https://discord.gg/RVCz3yxr">📢 Discord</a>
<a href="https://discord.gg/agora-999382051935506503">📢 Discord</a>
<span>&nbsp;&nbsp;&nbsp;&nbsp;</span>
<a href="https://swarms.world/explorer">Swarms Platform</a>
<span>&nbsp;&nbsp;&nbsp;&nbsp;</span>

@ -0,0 +1,72 @@
from swarms import Agent, AgentRearrange, OpenAIChat
from swarms.agents.multion_wrapper import MultiOnAgent
model = MultiOnAgent(
url="https://tesla.com",
)
llm = OpenAIChat()
def browser_automation(task: str):
"""
Run a task on the browser automation agent.
Args:
task (str): The task to be executed on the browser automation agent.
"""
out = model.run(task)
return out
# Purpose = To detect email spam using three different agents
agent1 = Agent(
agent_name="CyberTruckBuyer1",
system_prompt="Find the best deal on a Cyber Truck and provide your reasoning",
llm=llm,
max_loops=1,
# output_type=str,
metadata="json",
function_calling_format_type="OpenAI",
function_calling_type="json",
streaming_on=True,
tools=[browser_automation],
)
agent2 = Agent(
agent_name="CyberTruckBuyer2",
system_prompt="Find the best deal on a Cyber Truck and provide your reasoning",
llm=llm,
max_loops=1,
# output_type=str,
metadata="json",
function_calling_format_type="OpenAI",
function_calling_type="json",
streaming_on=True,
tools=[browser_automation],
)
agent3 = Agent(
agent_name="CyberTruckBuyer3",
system_prompt="Find the best deal on a Cyber Truck and provide your reasoning",
llm=llm,
max_loops=1,
# output_type=str,
metadata="json",
function_calling_format_type="OpenAI",
function_calling_type="json",
streaming_on=True,
tools=[browser_automation],
)
swarm = AgentRearrange(
flow="CyberTruckBuyer1 -> CyberTruckBuyer2 -> CyberTruckBuyer3",
agents=[agent1, agent2, agent3],
logging_enabled=True,
max_loops=1,
)
# Run all the agents
swarm.run("Let's buy a cyber truck")

@ -1,5 +1,4 @@
# Documentation for `AgentRearrange` Class
-----
# `AgentRearrange` Class
The `AgentRearrange` class represents a swarm of agents for rearranging tasks. It allows you to create a swarm of agents, add or remove agents from the swarm, and run the swarm to process tasks based on a specified flow pattern.
@ -119,8 +118,8 @@ from typing import List
# Initialize the director agent
director = Agent(
agent_name="Director",
system_prompt="Directs the tasks for the workers",
agent_name="Accounting Director",
system_prompt="Directs the accounting tasks for the workers",
llm=Anthropic(),
max_loops=1,
dashboard=False,
@ -128,13 +127,13 @@ director = Agent(
verbose=True,
stopping_token="<DONE>",
state_save_file_type="json",
saved_state_path="director.json",
saved_state_path="accounting_director.json",
)
# Initialize worker 1
worker1 = Agent(
agent_name="Worker1",
system_prompt="Generates a transcript for a youtube video on what swarms are",
agent_name="Accountant 1",
system_prompt="Processes financial transactions and prepares financial statements",
llm=Anthropic(),
max_loops=1,
dashboard=False,
@ -142,13 +141,13 @@ worker1 = Agent(
verbose=True,
stopping_token="<DONE>",
state_save_file_type="json",
saved_state_path="worker1.json",
saved_state_path="accountant1.json",
)
# Initialize worker 2
worker2 = Agent(
agent_name="Worker2",
system_prompt="Summarizes the transcript generated by Worker1",
agent_name="Accountant 2",
system_prompt="Performs audits and ensures compliance with financial regulations",
llm=Anthropic(),
max_loops=1,
dashboard=False,
@ -156,22 +155,22 @@ worker2 = Agent(
verbose=True,
stopping_token="<DONE>",
state_save_file_type="json",
saved_state_path="worker2.json",
saved_state_path="accountant2.json",
)
# Create a list of agents
agents = [director, worker1, worker2]
# Define the flow pattern
flow = "Director -> Worker1 -> Worker2"
flow = "Accounting Director -> Accountant 1 -> Accountant 2"
# Using AgentRearrange class
agent_system = AgentRearrange(agents=agents, flow=flow)
output = agent_system.run("Create a format to express and communicate swarms of llms in a structured manner for youtube")
output = agent_system.run("Process monthly financial statements")
print(output)
# Using rearrange function
output = rearrange(agents, flow, "Create a format to express and communicate swarms of llms in a structured manner for youtube")
output = rearrange(agents, flow, "Process monthly financial statements")
print(output)
```

@ -1,4 +1,10 @@
from swarms import Agent, OpenAIChat
from swarms.agents.multion_wrapper import MultiOnAgent
model = MultiOnAgent(
url="https://tesla.com",
)
def calculate_profit(revenue: float, expenses: float):
@ -28,6 +34,16 @@ def generate_report(company_name: str, profit: float):
"""
return f"The profit for {company_name} is ${profit}."
def browser_automation(task: str = None):
"""
Run a task on the browser automation agent.
Args:
task (str): The task to be executed on the browser automation agent.
"""
out = model.run(task)
return out
# Initialize the agent
agent = Agent(
@ -46,8 +62,9 @@ agent = Agent(
# tools=[calculate_profit, generate_report],
# docs_folder="docs",
# pdf_path="docs/accounting_agent.pdf",
# tools=[browser_automation],
)
agent.run(
"We're the Swarm Corporation, our total revenue is $100,000 and our total expenses are $50,000, is our revenue good?"
"Calculate the profit for Tesla with a revenue of $100,000 and expenses of $50,000."
)

@ -0,0 +1,53 @@
import os
from swarms import OpenAIChat, Agent, AgentRearrange
# Purpose = To detect email spam using three different agents
agent1 = Agent(
agent_name="SpamDetector1",
system_prompt="Detect if the email is spam or not, and provide your reasoning",
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
max_loops=1,
output_type=str,
# tools=[],
metadata="json",
function_calling_format_type="OpenAI",
function_calling_type="json",
streaming_on=True,
)
agent2 = Agent(
agent_name="SpamDetector2",
system_prompt="Detect if the email is spam or not, and provide your reasoning",
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
max_loops=1,
output_type=str,
# tools=[],
metadata="json",
function_calling_format_type="OpenAI",
function_calling_type="json",
streaming_on=True,
)
agent3 = Agent(
agent_name="SpamDetector3",
system_prompt="Detect if the email is spam or not, and provide your reasoning",
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
max_loops=1,
output_type=str,
# tools=[],
metadata="json",
function_calling_format_type="OpenAI",
function_calling_type="json",
streaming_on=True,
)
swarm = AgentRearrange(
flow="SpamDetector1 -> SpamDetector2 -> SpamDetector3",
agents=[agent1, agent2, agent3],
logging_enabled=True,
max_loops=1,
)
# Run all the agents
swarm.run("Find YSL bag with the biggest discount")

@ -31,4 +31,4 @@ def cleanup_json_logs(name: str = None):
# Call the function
cleanup_json_logs("artifacts_five")
cleanup_json_logs("artifacts_six")

@ -0,0 +1,75 @@
# pip3 install multion
# pip3 install swarms
from multion.client import MultiOn
import os
from swarms.models.base_llm import BaseLLM
def check_multion_api_key():
"""
Checks if the MultiOn API key is available in the environment variables.
Returns:
str: The MultiOn API key.
"""
api_key = os.getenv("MULTION_API_KEY")
return api_key
class MultiOnAgent(BaseLLM):
"""
Represents an agent that interacts with the MultiOn API to run tasks on a remote session.
Args:
api_key (str): The API key for accessing the MultiOn API.
url (str): The URL of the remote session.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Attributes:
client (MultiOn): The MultiOn client instance.
url (str): The URL of the remote session.
session_id (str): The ID of the current session.
Methods:
run: Runs a task on the remote session.
"""
def __init__(
self,
name: str = None,
system_prompt: str = None,
api_key: str = check_multion_api_key,
url: str = "https://huggingface.co/papers",
max_steps: int = 1,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.name = name
self.client = MultiOn(api_key=api_key)
self.url = url
self.system_prompt = system_prompt
self.max_steps = max_steps
def run(self, task: str, *args, **kwargs):
"""
Runs a task on the remote session.
Args:
task (str): The task to be executed on the remote session.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
response = self.client.browse(
cmd=task,
url=self.url,
local=True,
max_steps=self.max_steps,
)
# response = response.json()
# print(response.message)
return str(response.message)
Loading…
Cancel
Save