commit
bba64db2d4
@ -0,0 +1,27 @@
|
||||
import os
|
||||
import threading
|
||||
from swarms.agents.multion_wrapper import MultiOnAgent
|
||||
|
||||
def run_model(api_key):
|
||||
model = MultiOnAgent(api_key=api_key, max_steps=500, url="https://x.com")
|
||||
out = model.run(
|
||||
"""
|
||||
click on the 'Tweet' button to start a new tweet and post it saying: $pip3 install swarms
|
||||
|
||||
"""
|
||||
)
|
||||
print(out)
|
||||
|
||||
# Create a list to store the threads
|
||||
threads = []
|
||||
|
||||
# Run 100 instances using multithreading
|
||||
for _ in range(10):
|
||||
api_key = os.getenv("MULTION_API_KEY")
|
||||
thread = threading.Thread(target=run_model, args=(api_key,))
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
|
||||
# Wait for all threads to finish
|
||||
for thread in threads:
|
||||
thread.join()
|
@ -0,0 +1,72 @@
|
||||
|
||||
from swarms import Agent, AgentRearrange, OpenAIChat
|
||||
from swarms.agents.multion_wrapper import MultiOnAgent
|
||||
|
||||
model = MultiOnAgent(
|
||||
url="https://tesla.com",
|
||||
)
|
||||
|
||||
|
||||
llm = OpenAIChat()
|
||||
|
||||
|
||||
def browser_automation(task: str):
|
||||
"""
|
||||
Run a task on the browser automation agent.
|
||||
|
||||
Args:
|
||||
task (str): The task to be executed on the browser automation agent.
|
||||
"""
|
||||
out = model.run(task)
|
||||
return out
|
||||
|
||||
|
||||
# Purpose = To detect email spam using three different agents
|
||||
agent1 = Agent(
|
||||
agent_name="CyberTruckBuyer1",
|
||||
system_prompt="Find the best deal on a Cyber Truck and provide your reasoning",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
# output_type=str,
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
tools=[browser_automation],
|
||||
)
|
||||
|
||||
agent2 = Agent(
|
||||
agent_name="CyberTruckBuyer2",
|
||||
system_prompt="Find the best deal on a Cyber Truck and provide your reasoning",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
# output_type=str,
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
tools=[browser_automation],
|
||||
)
|
||||
|
||||
agent3 = Agent(
|
||||
agent_name="CyberTruckBuyer3",
|
||||
system_prompt="Find the best deal on a Cyber Truck and provide your reasoning",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
# output_type=str,
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
tools=[browser_automation],
|
||||
)
|
||||
|
||||
swarm = AgentRearrange(
|
||||
flow="CyberTruckBuyer1 -> CyberTruckBuyer2 -> CyberTruckBuyer3",
|
||||
agents=[agent1, agent2, agent3],
|
||||
logging_enabled=True,
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
# Run all the agents
|
||||
swarm.run("Let's buy a cyber truck")
|
@ -0,0 +1,53 @@
|
||||
import os
|
||||
|
||||
from swarms import OpenAIChat, Agent, AgentRearrange
|
||||
|
||||
# Purpose = To detect email spam using three different agents
|
||||
agent1 = Agent(
|
||||
agent_name="SpamDetector1",
|
||||
system_prompt="Detect if the email is spam or not, and provide your reasoning",
|
||||
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
agent2 = Agent(
|
||||
agent_name="SpamDetector2",
|
||||
system_prompt="Detect if the email is spam or not, and provide your reasoning",
|
||||
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
agent3 = Agent(
|
||||
agent_name="SpamDetector3",
|
||||
system_prompt="Detect if the email is spam or not, and provide your reasoning",
|
||||
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
swarm = AgentRearrange(
|
||||
flow="SpamDetector1 -> SpamDetector2 -> SpamDetector3",
|
||||
agents=[agent1, agent2, agent3],
|
||||
logging_enabled=True,
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
# Run all the agents
|
||||
swarm.run("Find YSL bag with the biggest discount")
|
@ -0,0 +1,75 @@
|
||||
# pip3 install multion
|
||||
# pip3 install swarms
|
||||
from multion.client import MultiOn
|
||||
import os
|
||||
from swarms.models.base_llm import BaseLLM
|
||||
|
||||
|
||||
def check_multion_api_key():
|
||||
"""
|
||||
Checks if the MultiOn API key is available in the environment variables.
|
||||
|
||||
Returns:
|
||||
str: The MultiOn API key.
|
||||
"""
|
||||
api_key = os.getenv("MULTION_API_KEY")
|
||||
return api_key
|
||||
|
||||
|
||||
class MultiOnAgent(BaseLLM):
|
||||
"""
|
||||
Represents an agent that interacts with the MultiOn API to run tasks on a remote session.
|
||||
|
||||
Args:
|
||||
api_key (str): The API key for accessing the MultiOn API.
|
||||
url (str): The URL of the remote session.
|
||||
*args: Variable length argument list.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Attributes:
|
||||
client (MultiOn): The MultiOn client instance.
|
||||
url (str): The URL of the remote session.
|
||||
session_id (str): The ID of the current session.
|
||||
|
||||
Methods:
|
||||
run: Runs a task on the remote session.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str = None,
|
||||
system_prompt: str = None,
|
||||
api_key: str = check_multion_api_key,
|
||||
url: str = "https://huggingface.co/papers",
|
||||
max_steps: int = 1,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.name = name
|
||||
self.client = MultiOn(api_key=api_key)
|
||||
self.url = url
|
||||
self.system_prompt = system_prompt
|
||||
self.max_steps = max_steps
|
||||
|
||||
def run(self, task: str, *args, **kwargs):
|
||||
"""
|
||||
Runs a task on the remote session.
|
||||
|
||||
Args:
|
||||
task (str): The task to be executed on the remote session.
|
||||
*args: Variable length argument list.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
"""
|
||||
response = self.client.browse(
|
||||
cmd=task,
|
||||
url=self.url,
|
||||
local=True,
|
||||
max_steps=self.max_steps,
|
||||
)
|
||||
|
||||
# response = response.json()
|
||||
|
||||
# print(response.message)
|
||||
return str(response.message)
|
||||
|
Loading…
Reference in new issue