Merge branch 'kyegomez:master' into master

pull/336/head
Vyomakesh Dundigalla 1 year ago committed by GitHub
commit bd27fc9e39
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -27,7 +27,7 @@ Run example in Collab: <a target="_blank" href="https://colab.research.google.co
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
### `Agent` Example
### `Agent`
- Reliable Structure that provides LLMS autonomy
- Extremely Customizeable with stopping conditions, interactivity, dynamical temperature, loop intervals, and so much more
- Enterprise Grade + Production Grade: `Agent` is designed and optimized for automating real-world tasks at scale!
@ -127,15 +127,69 @@ for task in workflow.tasks:
```
## `Multi Modal Autonomous Agents`
- Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
### `ModelParallelizer`
- Concurrent Execution of Multiple Models: The ModelParallelizer allows you to run multiple models concurrently, comparing their outputs. This feature enables you to easily compare the performance and results of different models, helping you make informed decisions about which model to use for your specific task.
- Plug-and-Play Integration: The structure provides a seamless integration with various models, including OpenAIChat, Anthropic, Mixtral, and Gemini. You can easily plug in any of these models and start using them without the need for extensive modifications or setup.
```python
# Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os
from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent
from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
from swarms.swarms import ModelParallelizer
load_dotenv()
# API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Initialize the models
llm = OpenAIChat(openai_api_key=openai_api_key)
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
mixtral = Mixtral()
gemini = Gemini(gemini_api_key=gemini_api_key)
# Initialize the parallelizer
llms = [llm, anthropic, mixtral, gemini]
parallelizer = ModelParallelizer(llms)
# Set the task
task = "Generate a 10,000 word blog on health and wellness."
# Run the task
out = parallelizer.run(task)
# Print the responses 1 by 1
for i in range(len(out)):
print(f"Response from LLM {i}: {out[i]}")
```
### Simple Conversational Agent
- Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our models
- Reliable conversational structure to hold messages together with dynamic handling for long context conversations and interactions with auto chunking
- Reliable, this simple system will always provide responses you want.
```python
import os
from dotenv import load_dotenv
from swarms import (
OpenAIChat,
Conversation,
)
conv = Conversation(
time_enabled=True,
)
# Load the environment variables
load_dotenv()
@ -144,65 +198,161 @@ load_dotenv()
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = GPT4VisionAPI(
openai_api_key=api_key,
max_tokens=500,
)
llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4")
# Initialize the task
task = (
"Analyze this image of an assembly line and identify any issues such as"
" misaligned parts, defects, or deviations from the standard assembly"
" process. IF there is anything unsafe in the image, explain why it is"
" unsafe and how it could be improved."
# Run the language model in a loop
def interactive_conversation(llm):
conv = Conversation()
while True:
user_input = input("User: ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = (
conv.return_history_as_string()
) # Get the conversation history
out = llm(task)
conv.add("assistant", out)
print(
f"Assistant: {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
# Replace with your LLM instance
interactive_conversation(llm)
```
### `SwarmNetwork`
- Efficient Task Management: SwarmNetwork's intelligent agent pool and task queue management system ensures tasks are distributed evenly across agents. This leads to efficient use of resources and faster task completion.
- Scalability: SwarmNetwork can dynamically scale the number of agents based on the number of pending tasks. This means it can handle an increase in workload by adding more agents, and conserve resources when the workload is low by reducing the number of agents.
- Versatile Deployment Options: With SwarmNetwork, each agent can be run on its own thread, process, container, machine, or even cluster. This provides a high degree of flexibility and allows for deployment that best suits the user's needs and infrastructure.
```python
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
img = "assembly_line.jpg"
## Initialize the workflow
agent = Agent(
llm=llm,
max_loops="auto",
autosave=True,
dashboard=True,
multi_modal=True
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
# Load the swarmnet with the agents
swarmnet = SwarmNetwork(
agents=[agent, agent2, agent3],
)
# List the agents in the swarm network
out = swarmnet.list_agents()
print(out)
# Run the workflow on a task
agent.run(task=task, img=img)
out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
# Run all the agents in the swarm network on a task
out = swarmnet.run_many_agents(
"Generate a 10,000 word blog on health and wellness."
)
print(out)
```
### `OmniModalAgent`
- An agent that can understand any modality and conditionally generate any modality.
### `Task`
Task Execution: The Task structure allows for the execution of tasks by an assigned agent. The run method is used to execute the task. It's like a Zapier for LLMs
- Task Description: Each Task can have a description, providing a human-readable explanation of what the task is intended to do.
- Task Scheduling: Tasks can be scheduled for execution at a specific time using the schedule_time attribute.
- Task Triggers: The set_trigger method allows for the setting of a trigger function that is executed before the task.
- Task Actions: The set_action method allows for the setting of an action function that is executed after the task.
- Task Conditions: The set_condition method allows for the setting of a condition function. The task will only be executed if this function returns True.
- Task Dependencies: The add_dependency method allows for the addition of dependencies to the task. The task will only be executed if all its dependencies have been completed.
- Task Priority: The set_priority method allows for the setting of the task's priority. Tasks with higher priority will be executed before tasks with lower priority.
- Task History: The history attribute is a list that keeps track of all the results of the task execution. This can be useful for debugging and for tasks that need to be executed multiple times.
```python
from swarms.agents.omni_modal_agent import OmniModalAgent, OpenAIChat
from swarms.structs import Task, Agent
from swarms.models import OpenAIChat
from dotenv import load_dotenv
import os
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
model_name="gpt-4",
openai_api_key=api_key,
# Define a function to be used as the action
def my_action():
print("Action executed")
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create a task
task = Task(description="What's the weather in miami", agent=agent)
# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)
# Execute the task
print("Executing task...")
task.run()
# Check if the task is completed
if task.is_completed():
print("Task completed")
else:
print("Task not completed")
# Output the result of the task
print(f"Task result: {task.result}")
agent = OmniModalAgent(llm)
agent.run("Generate a video of a swarm of fish and then make an image out of the video")
```
---
## Real-World Deployment
### Multi-Agent Swarm for Logistics
- Swarms is a framework designed for real-world deployment here is a demo presenting a fully ready to use Swarm for a vast array of logistics tasks.
- Swarms is designed to be modular and reliable for real-world deployments.
@ -312,6 +462,58 @@ efficiency_analysis = efficiency_agent.run(
factory_image,
)
```
---
## `Multi Modal Autonomous Agents`
- Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
```python
# Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os
from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = GPT4VisionAPI(
openai_api_key=api_key,
max_tokens=500,
)
# Initialize the task
task = (
"Analyze this image of an assembly line and identify any issues such as"
" misaligned parts, defects, or deviations from the standard assembly"
" process. IF there is anything unsafe in the image, explain why it is"
" unsafe and how it could be improved."
)
img = "assembly_line.jpg"
## Initialize the workflow
agent = Agent(
llm=llm,
max_loops="auto",
autosave=True,
dashboard=True,
multi_modal=True
)
# Run the workflow on a task
agent.run(task=task, img=img)
```
---
## Multi-Modal Model APIs
### `Gemini`
- Deploy Gemini from Google with utmost reliability with our visual chain of thought prompt that enables more reliable responses
@ -460,160 +662,6 @@ print(video_path)
```
### `ModelParallelizer`
- Concurrent Execution of Multiple Models: The ModelParallelizer allows you to run multiple models concurrently, comparing their outputs. This feature enables you to easily compare the performance and results of different models, helping you make informed decisions about which model to use for your specific task.
- Plug-and-Play Integration: The structure provides a seamless integration with various models, including OpenAIChat, Anthropic, Mixtral, and Gemini. You can easily plug in any of these models and start using them without the need for extensive modifications or setup.
```python
import os
from dotenv import load_dotenv
from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
from swarms.swarms import ModelParallelizer
load_dotenv()
# API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Initialize the models
llm = OpenAIChat(openai_api_key=openai_api_key)
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
mixtral = Mixtral()
gemini = Gemini(gemini_api_key=gemini_api_key)
# Initialize the parallelizer
llms = [llm, anthropic, mixtral, gemini]
parallelizer = ModelParallelizer(llms)
# Set the task
task = "Generate a 10,000 word blog on health and wellness."
# Run the task
out = parallelizer.run(task)
# Print the responses 1 by 1
for i in range(len(out)):
print(f"Response from LLM {i}: {out[i]}")
```
### Simple Conversational Agent
- Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our models
- Reliable conversational structure to hold messages together with dynamic handling for long context conversations and interactions with auto chunking
- Reliable, this simple system will always provide responses you want.
```python
import os
from dotenv import load_dotenv
from swarms import (
OpenAIChat,
Conversation,
)
conv = Conversation(
time_enabled=True,
)
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4")
# Run the language model in a loop
def interactive_conversation(llm):
conv = Conversation()
while True:
user_input = input("User: ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = (
conv.return_history_as_string()
) # Get the conversation history
out = llm(task)
conv.add("assistant", out)
print(
f"Assistant: {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
# Replace with your LLM instance
interactive_conversation(llm)
```
### `SwarmNetwork`
- Efficient Task Management: SwarmNetwork's intelligent agent pool and task queue management system ensures tasks are distributed evenly across agents. This leads to efficient use of resources and faster task completion.
- Scalability: SwarmNetwork can dynamically scale the number of agents based on the number of pending tasks. This means it can handle an increase in workload by adding more agents, and conserve resources when the workload is low by reducing the number of agents.
- Versatile Deployment Options: With SwarmNetwork, each agent can be run on its own thread, process, container, machine, or even cluster. This provides a high degree of flexibility and allows for deployment that best suits the user's needs and infrastructure.
```python
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
## Initialize the workflow
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
# Load the swarmnet with the agents
swarmnet = SwarmNetwork(
agents=[agent, agent2, agent3],
)
# List the agents in the swarm network
out = swarmnet.list_agents()
print(out)
# Run the workflow on a task
out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
# Run all the agents in the swarm network on a task
out = swarmnet.run_many_agents(
"Generate a 10,000 word blog on health and wellness."
)
print(out)
```
---
# Features 🤖
@ -688,7 +736,7 @@ Swarms framework is not just a tool but a robust, scalable, and secure partner i
## Documentation
- For documentation, go here, [swarms.apac.ai](https://swarms.apac.ai)
- Out documentation is located here at: [swarms.apac.ai](https://swarms.apac.ai)
## 🫶 Contributions:
@ -709,7 +757,7 @@ To see how to contribute, visit [Contribution guidelines](https://github.com/kye
## Discovery Call
Book a discovery call with the Swarms team to learn how to optimize and scale your swarm! [Click here to book a time that works for you!](https://calendly.com/swarm-corp/30min?month=2023-11)
Book a discovery call to learn how Swarms can lower your operating costs by 40% with swarms of autonomous agents in lightspeed. [Click here to book a time that works for you!](https://calendly.com/swarm-corp/30min?month=2023-11)
# License
Apache License

@ -39,7 +39,7 @@ backoff = "2.2.1"
marshmallow = "3.19.0"
datasets = "2.10.1"
optimum = "1.15.0"
diffusers = "0.17.1"
diffusers = "*"
PyPDF2 = "3.0.1"
accelerate = "0.22.0"
sentencepiece = "0.1.98"

@ -40,7 +40,7 @@ albumentations
basicsr
termcolor==2.2.0
controlnet-aux
diffusers==0.17.1
diffusers
einops==0.7.0
imageio==2.25.1
opencv-python-headless==4.8.1.78

@ -10,6 +10,7 @@ from transformers import AutoModelForVision2Seq, AutoProcessor
from swarms.models.base_multimodal_model import BaseMultiModalModel
# utils
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1

@ -103,6 +103,12 @@ class Task:
except Exception as error:
print(f"[ERROR][Task] {error}")
def run(self):
self.execute()
def __call__(self):
self.execute()
def handle_scheduled_task(self):
"""
Handles the execution of a scheduled task.

@ -2,6 +2,7 @@ from swarms.structs.autoscaler import AutoScaler
from swarms.swarms.model_parallizer import ModelParallelizer
from swarms.swarms.multi_agent_collab import MultiAgentCollaboration
from swarms.swarms.base import AbstractSwarm
# from swarms.swarms.team import Team
__all__ = [

@ -21,12 +21,16 @@ class Team(BaseModel):
"""
tasks: Optional[List[Task]] = Field(description="List of tasks")
agents: Optional[List[Agent]] = Field(description="List of agents in this Team.")
agents: Optional[List[Agent]] = Field(
description="List of agents in this Team."
)
architecture = Field(
description="architecture that the Team will follow.", default="sequential"
description="architecture that the Team will follow.",
default="sequential",
)
verbose: bool = Field(
description="Verbose mode for the Agent Execution", default=False
description="Verbose mode for the Agent Execution",
default=False,
)
config: Optional[Json] = Field(
description="Configuration of the Team.", default=None
@ -37,19 +41,27 @@ class Team(BaseModel):
if not values.get("config") and (
not values.get("agents") and not values.get("tasks")
):
raise ValueError("Either agents and task need to be set or config.")
raise ValueError(
"Either agents and task need to be set or config."
)
if values.get("config"):
config = json.loads(values.get("config"))
if not config.get("agents") or not config.get("tasks"):
raise ValueError("Config should have agents and tasks.")
raise ValueError(
"Config should have agents and tasks."
)
values["agents"] = [Agent(**agent) for agent in config["agents"]]
values["agents"] = [
Agent(**agent) for agent in config["agents"]
]
tasks = []
for task in config["tasks"]:
task_agent = [
agt for agt in values["agents"] if agt.role == task["agent"]
agt
for agt in values["agents"]
if agt.role == task["agent"]
][0]
del task["agent"]
tasks.append(Task(**task, agent=task_agent))
@ -92,4 +104,4 @@ class Team(BaseModel):
def __log(self, message):
if self.verbose:
print(message)
print(message)

@ -0,0 +1,47 @@
from swarms.structs import Task, Agent
from swarms.models import OpenAIChat
from dotenv import load_dotenv
import os
# Load the environment variables
load_dotenv()
# Define a function to be used as the action
def my_action():
print("Action executed")
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create a task
task = Task(description="What's the weather in miami", agent=agent)
# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)
# Execute the task
print("Executing task...")
task.run()
# Check if the task is completed
if task.is_completed():
print("Task completed")
else:
print("Task not completed")
# Output the result of the task
print(f"Task result: {task.result}")

@ -162,5 +162,3 @@ def test_ssd1b_repr_str(ssd1b_model):
image_url = ssd1b_model(task)
assert repr(ssd1b_model) == f"SSD1B(image_url={image_url})"
assert str(ssd1b_model) == f"SSD1B(image_url={image_url})"

@ -3,7 +3,6 @@ from io import StringIO
from contextlib import redirect_stdout
from swarms.utils.class_args_wrapper import print_class_parameters
from swarms.structs.agent import Agent
from swarms.structs.autoscaler import Autoscaler
from fastapi import FastAPI
from fastapi.testclient import TestClient
@ -23,19 +22,6 @@ def test_print_class_parameters_agent():
assert output == expected_output
def test_print_class_parameters_autoscaler():
f = StringIO()
with redirect_stdout(f):
print_class_parameters(Autoscaler)
output = f.getvalue().strip()
# Replace with the expected output for Autoscaler class
expected_output = (
"Parameter: min_agents, Type: <class 'int'>\nParameter:"
" max_agents, Type: <class 'int'>"
)
assert output == expected_output
def test_print_class_parameters_error():
with pytest.raises(TypeError):
print_class_parameters("Not a class")
@ -43,7 +29,7 @@ def test_print_class_parameters_error():
@app.get("/parameters/{class_name}")
def get_parameters(class_name: str):
classes = {"Agent": Agent, "Autoscaler": Autoscaler}
classes = {"Agent": Agent}
if class_name in classes:
return print_class_parameters(
classes[class_name], api_format=True
@ -63,17 +49,6 @@ def test_get_parameters_agent():
assert response.json() == expected_output
def test_get_parameters_autoscaler():
response = client.get("/parameters/Autoscaler")
assert response.status_code == 200
# Replace with the expected output for Autoscaler class
expected_output = {
"min_agents": "<class 'int'>",
"max_agents": "<class 'int'>",
}
assert response.json() == expected_output
def test_get_parameters_not_found():
response = client.get("/parameters/NonexistentClass")
assert response.status_code == 200

@ -75,6 +75,3 @@ def test_handle_stream_output(interpreter, monkeypatch):
monkeypatch.setattr("sys.stdout", mock_readline())
# More test code needed here to simulate and assert the behavior of handle_stream_output
# More tests needed for run method, error handling, and edge cases.

Loading…
Cancel
Save