diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml
index db0a8e83..cc179dfa 100644
--- a/docs/mkdocs.yml
+++ b/docs/mkdocs.yml
@@ -250,6 +250,7 @@ nav:
- Integrating External Agents from Griptape, Langchain, etc: "swarms/agents/external_party_agents.md"
- Reasoning Agents:
+ - Overview: "swarms/agents/reasoning_agents_overview.md"
- Self Consistency Agent: "swarms/agents/consistency_agent.md"
- IRE Agent: "swarms/agents/iterative_agent.md"
- Reasoning Duo: "swarms/agents/reasoning_duo.md"
diff --git a/docs/swarms/agents/reasoning_agents_overview.md b/docs/swarms/agents/reasoning_agents_overview.md
new file mode 100644
index 00000000..d995806b
--- /dev/null
+++ b/docs/swarms/agents/reasoning_agents_overview.md
@@ -0,0 +1,389 @@
+# Reasoning Agents Overview
+
+
+Reasoning agents are sophisticated agents that employ advanced cognitive strategies to improve problem-solving performance beyond standard language model capabilities. Unlike traditional prompt-based approaches, reasoning agents implement structured methodologies that enable them to think more systematically, self-reflect, collaborate, and iteratively refine their responses.
+
+These agents are inspired by cognitive science and human reasoning processes, incorporating techniques such as:
+
+- **Multi-step reasoning**: Breaking down complex problems into manageable components
+
+- **Self-reflection**: Evaluating and critiquing their own outputs
+
+- **Iterative refinement**: Progressively improving solutions through multiple iterations
+
+- **Collaborative thinking**: Using multiple reasoning pathways or agent perspectives
+
+- **Memory integration**: Learning from past experiences and building knowledge over time
+
+- **Meta-cognitive awareness**: Understanding their own thinking processes and limitations
+
+
+
+## Available Reasoning Agents
+
+| Agent Name | Type | Research Paper | Key Features | Best Use Cases | Implementation | Documentation |
+|------------|------|----------------|---------------|----------------|----------------|---------------|
+| **Self-Consistency Agent** | Consensus-based | [Self-Consistency Improves Chain of Thought Reasoning](https://arxiv.org/abs/2203.07870) (Wang et al., 2022) | • Multiple independent reasoning paths
• Majority voting aggregation
• Concurrent execution
• Validation mode | • Mathematical problem solving
• High-accuracy requirements
• Decision making scenarios
• Answer validation | `SelfConsistencyAgent` | [Guide](consistency_agent.md) |
+| **Reasoning Duo** | Collaborative | Novel dual-agent architecture | • Separate reasoning and execution agents
• Collaborative problem solving
• Task decomposition
• Cross-validation | • Complex analysis tasks
• Multi-step problem solving
• Tasks requiring verification
• Research and planning | `ReasoningDuo` | [Guide](reasoning_duo.md) |
+| **IRE Agent** | Iterative | Iterative Reflective Expansion framework | • Hypothesis generation
• Path simulation
• Error reflection
• Dynamic revision | • Complex reasoning tasks
• Research problems
• Learning scenarios
• Strategy development | `IterativeReflectiveExpansion` | [Guide](iterative_agent.md) |
+| **Reflexion Agent** | Self-reflective | [Reflexion: Language Agents with Verbal Reinforcement Learning](https://arxiv.org/abs/2303.11366) (Shinn et al., 2023) | • Self-evaluation
• Experience memory
• Adaptive improvement
• Learning from failures | • Continuous improvement tasks
• Long-term projects
• Learning scenarios
• Quality refinement | `ReflexionAgent` | [Guide](reflexion_agent.md) |
+| **GKP Agent** | Knowledge-based | [Generated Knowledge Prompting](https://arxiv.org/abs/2110.08387) (Liu et al., 2022) | • Knowledge generation
• Multi-perspective reasoning
• Information synthesis
• Fact integration | • Knowledge-intensive tasks
• Research questions
• Fact-based reasoning
• Information synthesis | `GKPAgent` | [Guide](gkp_agent.md) |
+| **Agent Judge** | Evaluation | [Agent-as-a-Judge: Evaluate Agents with Agents](https://arxiv.org/abs/2410.10934) | • Quality assessment
• Structured evaluation
• Performance metrics
• Feedback generation | • Quality control
• Output evaluation
• Performance assessment
• Model comparison | `AgentJudge` | [Guide](agent_judge.md) |
+| **REACT Agent** | Action-based | [ReAct: Synergizing Reasoning and Acting](https://arxiv.org/abs/2210.03629) (Yao et al., 2022) | • Reason-Act-Observe cycle
• Memory integration
• Action planning
• Experience building | • Interactive tasks
• Tool usage scenarios
• Planning problems
• Learning environments | `ReactAgent` | [Guide](react_agent.md) |
+
+## Agent Architectures
+
+### Self-Consistency Agent
+
+**Description**: Implements multiple independent reasoning paths with consensus-building to improve response reliability and accuracy through majority voting mechanisms.
+
+**Key Features**:
+- Concurrent execution of multiple reasoning instances
+- AI-powered aggregation and consensus analysis
+- Validation mode for answer verification
+- Configurable sample sizes and output formats
+
+**Architecture Diagram**:
+
+```mermaid
+graph TD
+ A[Task Input] --> B[Agent Pool]
+ B --> C[Response 1]
+ B --> D[Response 2]
+ B --> E[Response 3]
+ B --> F[Response N]
+ C --> G[Aggregation Agent]
+ D --> G
+ E --> G
+ F --> G
+ G --> H[Majority Voting Analysis]
+ H --> I[Consensus Evaluation]
+ I --> J[Final Answer]
+
+ style A fill:#e1f5fe
+ style J fill:#c8e6c9
+ style G fill:#fff3e0
+```
+
+**Use Cases**: Mathematical problem solving, high-stakes decision making, answer validation, quality assurance processes
+
+**Implementation**: `SelfConsistencyAgent`
+
+**Documentation**: [Self-Consistency Agent Guide](consistency_agent.md)
+
+---
+
+### Reasoning Duo
+
+**Description**: Dual-agent collaborative system that separates reasoning and execution phases, enabling specialized analysis and task completion through coordinated agent interaction.
+
+**Key Features**:
+- Separate reasoning and execution agents
+- Collaborative problem decomposition
+- Cross-validation between agents
+- Configurable model selection for each agent
+
+**Architecture Diagram**:
+
+```mermaid
+graph TD
+ A[Task Input] --> B[Reasoning Agent]
+ B --> C[Deep Analysis]
+ C --> D[Strategy Planning]
+ D --> E[Reasoning Output]
+ E --> F[Main Agent]
+ F --> G[Task Execution]
+ G --> H[Response Generation]
+ H --> I[Final Output]
+
+ style A fill:#e1f5fe
+ style B fill:#f3e5f5
+ style F fill:#e8f5e8
+ style I fill:#c8e6c9
+```
+
+**Use Cases**: Complex analysis tasks, multi-step problem solving, research and planning, verification workflows
+
+**Implementation**: `ReasoningDuo`
+
+**Documentation**: [Reasoning Duo Guide](reasoning_duo.md)
+
+---
+
+### IRE Agent (Iterative Reflective Expansion)
+
+**Description**: Sophisticated reasoning framework employing iterative hypothesis generation, simulation, and refinement through continuous cycles of testing and meta-cognitive reflection.
+
+**Key Features**:
+- Hypothesis generation and testing
+- Path simulation and evaluation
+- Meta-cognitive reflection capabilities
+- Dynamic strategy revision based on feedback
+
+**Architecture Diagram**:
+
+```mermaid
+graph TD
+ A[Problem Input] --> B[Hypothesis Generation]
+ B --> C[Path Simulation]
+ C --> D[Outcome Evaluation]
+ D --> E{Satisfactory?}
+ E -->|No| F[Meta-Cognitive Reflection]
+ F --> G[Path Revision]
+ G --> H[Knowledge Integration]
+ H --> C
+ E -->|Yes| I[Solution Synthesis]
+ I --> J[Final Answer]
+
+ style A fill:#e1f5fe
+ style F fill:#fff3e0
+ style J fill:#c8e6c9
+```
+
+**Use Cases**: Complex reasoning tasks, research problems, strategy development, iterative learning scenarios
+
+**Implementation**: `IterativeReflectiveExpansion`
+
+**Documentation**: [IRE Agent Guide](iterative_agent.md)
+
+---
+
+### Reflexion Agent
+
+**Description**: Advanced self-reflective system implementing actor-evaluator-reflector architecture for continuous improvement through experience-based learning and memory integration.
+
+**Key Features**:
+- Actor-evaluator-reflector sub-agent architecture
+- Self-evaluation and quality assessment
+- Experience memory and learning capabilities
+- Adaptive improvement through reflection
+
+**Architecture Diagram**:
+
+```mermaid
+graph TD
+ A[Task Input] --> B[Actor Agent]
+ B --> C[Initial Response]
+ C --> D[Evaluator Agent]
+ D --> E[Quality Assessment]
+ E --> F[Performance Score]
+ F --> G[Reflector Agent]
+ G --> H[Self-Reflection]
+ H --> I[Experience Memory]
+ I --> J{Max Iterations?}
+ J -->|No| K[Refined Response]
+ K --> D
+ J -->|Yes| L[Final Response]
+
+ style A fill:#e1f5fe
+ style B fill:#e8f5e8
+ style D fill:#fff3e0
+ style G fill:#f3e5f5
+ style L fill:#c8e6c9
+```
+
+**Use Cases**: Continuous improvement tasks, long-term projects, adaptive learning, quality refinement processes
+
+**Implementation**: `ReflexionAgent`
+
+**Documentation**: [Reflexion Agent Guide](reflexion_agent.md)
+
+---
+
+### GKP Agent (Generated Knowledge Prompting)
+
+**Description**: Knowledge-driven reasoning system that generates relevant information before answering queries, implementing multi-perspective analysis through coordinated knowledge synthesis.
+
+**Key Features**:
+- Dynamic knowledge generation
+- Multi-perspective reasoning coordination
+- Information synthesis and integration
+- Configurable knowledge item generation
+
+**Architecture Diagram**:
+
+```mermaid
+graph TD
+ A[Query Input] --> B[Knowledge Generator]
+ B --> C[Generate Knowledge Item 1]
+ B --> D[Generate Knowledge Item 2]
+ B --> E[Generate Knowledge Item N]
+ C --> F[Reasoner Agent]
+ D --> F
+ E --> F
+ F --> G[Knowledge Integration]
+ G --> H[Reasoning Process]
+ H --> I[Response Generation]
+ I --> J[Coordinator]
+ J --> K[Final Answer]
+
+ style A fill:#e1f5fe
+ style B fill:#fff3e0
+ style F fill:#e8f5e8
+ style J fill:#f3e5f5
+ style K fill:#c8e6c9
+```
+
+**Use Cases**: Knowledge-intensive tasks, research questions, fact-based reasoning, information synthesis
+
+**Implementation**: `GKPAgent`
+
+**Documentation**: [GKP Agent Guide](gkp_agent.md)
+
+---
+
+### Agent Judge
+
+**Description**: Specialized evaluation system for assessing agent outputs and system performance, providing structured feedback and quality metrics through comprehensive assessment frameworks.
+
+**Key Features**:
+- Structured evaluation methodology
+- Quality assessment and scoring
+- Performance metrics generation
+- Configurable evaluation criteria
+
+**Architecture Diagram**:
+
+```mermaid
+graph TD
+ A[Output to Evaluate] --> B[Evaluation Criteria]
+ A --> C[Judge Agent]
+ B --> C
+ C --> D[Quality Analysis]
+ D --> E[Criteria Assessment]
+ E --> F[Scoring Framework]
+ F --> G[Feedback Generation]
+ G --> H[Evaluation Report]
+
+ style A fill:#e1f5fe
+ style C fill:#fff3e0
+ style H fill:#c8e6c9
+```
+
+**Use Cases**: Quality control, output evaluation, performance assessment, model comparison
+
+**Implementation**: `AgentJudge`
+
+**Documentation**: [Agent Judge Guide](agent_judge.md)
+
+---
+
+### REACT Agent (Reason-Act-Observe)
+
+**Description**: Action-oriented reasoning system implementing iterative reason-act-observe cycles with memory integration for interactive task completion and environmental adaptation.
+
+**Key Features**:
+- Reason-Act-Observe cycle implementation
+- Memory integration and experience building
+- Action planning and execution
+- Environmental state observation
+
+**Architecture Diagram**:
+
+```mermaid
+graph TD
+ A[Task Input] --> B[Memory Review]
+ B --> C[Current State Observation]
+ C --> D[Reasoning Process]
+ D --> E[Action Planning]
+ E --> F[Action Execution]
+ F --> G[Outcome Observation]
+ G --> H[Experience Storage]
+ H --> I{Task Complete?}
+ I -->|No| C
+ I -->|Yes| J[Final Response]
+
+ style A fill:#e1f5fe
+ style B fill:#f3e5f5
+ style D fill:#fff3e0
+ style J fill:#c8e6c9
+```
+
+**Use Cases**: Interactive tasks, tool usage scenarios, planning problems, learning environments
+
+**Implementation**: `ReactAgent`
+
+**Documentation**: [REACT Agent Guide](react_agent.md)
+
+
+## Implementation Guide
+
+### Unified Interface via Reasoning Agent Router
+
+The `ReasoningAgentRouter` provides a centralized interface for accessing all reasoning agent implementations:
+
+```python
+from swarms.agents import ReasoningAgentRouter
+
+# Initialize router with specific reasoning strategy
+router = ReasoningAgentRouter(
+ swarm_type="self-consistency", # Select reasoning methodology
+ model_name="gpt-4o-mini",
+ num_samples=5, # Configuration for consensus-based methods
+ max_loops=3 # Configuration for iterative methods
+)
+
+# Execute reasoning process
+result = router.run("Analyze the optimal solution for this complex business problem")
+print(result)
+```
+
+### Direct Agent Implementation
+
+```python
+from swarms.agents import SelfConsistencyAgent, ReasoningDuo, ReflexionAgent
+
+# Self-Consistency Agent for high-accuracy requirements
+consistency_agent = SelfConsistencyAgent(
+ model_name="gpt-4o-mini",
+ num_samples=5
+)
+
+# Reasoning Duo for collaborative analysis workflows
+duo_agent = ReasoningDuo(
+ model_names=["gpt-4o-mini", "gpt-4o"]
+)
+
+# Reflexion Agent for adaptive learning scenarios
+reflexion_agent = ReflexionAgent(
+ model_name="gpt-4o-mini",
+ max_loops=3,
+ memory_capacity=100
+)
+```
+
+## Choosing the Right Reasoning Agent
+
+| Scenario | Recommended Agent | Why? |
+|----------|------------------|-------|
+| **High-stakes decisions** | Self-Consistency | Multiple validation paths ensure reliability |
+| **Complex research tasks** | Reasoning Duo + GKP | Collaboration + knowledge synthesis |
+| **Learning & improvement** | Reflexion | Built-in self-improvement mechanisms |
+| **Mathematical problems** | Self-Consistency | Proven effectiveness on logical reasoning |
+| **Quality assessment** | Agent Judge | Specialized evaluation capabilities |
+| **Interactive planning** | REACT | Action-oriented reasoning cycle |
+| **Iterative refinement** | IRE | Designed for progressive improvement |
+
+
+## Technical Documentation
+
+For comprehensive technical documentation on each reasoning agent implementation:
+
+- [Self-Consistency Agent](consistency_agent.md)
+
+- [Reasoning Duo](reasoning_duo.md)
+
+- [IRE Agent](iterative_agent.md)
+
+- [Reflexion Agent](reflexion_agent.md)
+
+- [GKP Agent](gkp_agent.md)
+
+- [Agent Judge](agent_judge.md)
+
+- [Reasoning Agent Router](reasoning_agent_router.md)
+
+
+---
+
+Reasoning agents represent a significant advancement in enterprise agent capabilities, implementing sophisticated cognitive architectures that deliver enhanced reliability, consistency, and performance compared to traditional language model implementations.
\ No newline at end of file
diff --git a/pyproject.toml b/pyproject.toml
index 30d58aa0..8da6a778 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
-version = "8.0.0"
+version = "8.0.1"
description = "Swarms - TGSC"
license = "MIT"
authors = ["Kye Gomez "]