From c51ef4b72df6cce4e4e893a90b35699a18683433 Mon Sep 17 00:00:00 2001 From: Your Name Date: Tue, 1 Oct 2024 13:52:07 -0400 Subject: [PATCH] [5.6.8] --- ..._config.yaml => agents_config_example.yaml | 0 agents_from_yaml_example.py | 12 +- docs/mkdocs.yml | 1 + docs/swarms/structs/forest_swarm.md | 141 +++++++ forest_swarm_example.py | 44 +++ sap.py | 360 +++++++++++++++++ swarms/agents/__init__.py | 4 +- swarms/agents/create_agents_from_yaml.py | 128 +++++-- swarms/structs/agent.py | 13 +- swarms/structs/tree_swarm.py | 362 ++++++++++++++++++ tests/agents/test_create_agents_from_yaml.py | 127 ++++-- 11 files changed, 1104 insertions(+), 88 deletions(-) rename agents_config.yaml => agents_config_example.yaml (100%) create mode 100644 docs/swarms/structs/forest_swarm.md create mode 100644 forest_swarm_example.py create mode 100644 sap.py create mode 100644 swarms/structs/tree_swarm.py diff --git a/agents_config.yaml b/agents_config_example.yaml similarity index 100% rename from agents_config.yaml rename to agents_config_example.yaml diff --git a/agents_from_yaml_example.py b/agents_from_yaml_example.py index a2b7dbd6..c338d0d1 100644 --- a/agents_from_yaml_example.py +++ b/agents_from_yaml_example.py @@ -6,15 +6,19 @@ from swarms import create_agents_from_yaml load_dotenv() # Path to your YAML file -yaml_file = 'agents_config.yaml' +yaml_file = "agents_config.yaml" try: # Create agents and run tasks (using 'both' to return agents and task results) - agents, task_results = create_agents_from_yaml(yaml_file, return_type="both") + agents, task_results = create_agents_from_yaml( + yaml_file, return_type="both" + ) # Print the results of the tasks for result in task_results: - print(f"Agent: {result['agent_name']} | Task: {result['task']} | Output: {result.get('output', 'Error encountered')}") + print( + f"Agent: {result['agent_name']} | Task: {result['task']} | Output: {result.get('output', 'Error encountered')}" + ) except Exception as e: - logger.error(f"An error occurred: {e}") \ No newline at end of file + logger.error(f"An error occurred: {e}") diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index c0766853..c590ad63 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -166,6 +166,7 @@ nav: - GroupChat: "swarms/structs/group_chat.md" - AgentRegistry: "swarms/structs/agent_registry.md" - SpreadSheetSwarm: "swarms/structs/spreadsheet_swarm.md" + - ForestSwarm: "swarms/structs/forest_swarm.md" - Workflows: - ConcurrentWorkflow: "swarms/structs/concurrentworkflow.md" - SequentialWorkflow: "swarms/structs/sequential_workflow.md" diff --git a/docs/swarms/structs/forest_swarm.md b/docs/swarms/structs/forest_swarm.md new file mode 100644 index 00000000..3e1f0de9 --- /dev/null +++ b/docs/swarms/structs/forest_swarm.md @@ -0,0 +1,141 @@ +# Forest Swarm + +This documentation describes the **ForestSwarm** that organizes agents into trees. Each agent specializes in processing specific tasks. Trees are collections of agents, each assigned based on their relevance to a task through keyword extraction and embedding-based similarity. + +The architecture allows for efficient task assignment by selecting the most relevant agent from a set of trees. Tasks are processed asynchronously, with agents selected based on task relevance, calculated by the similarity of system prompts and task keywords. + +--- + +### Class: `TreeAgent` + +`TreeAgent` represents an individual agent responsible for handling a specific task. Agents are initialized with a **system prompt** and are responsible for dynamically determining their relevance to a given task. + +#### Attributes + +| **Attribute** | **Type** | **Description** | +|--------------------------|------------------|---------------------------------------------------------------------------------| +| `system_prompt` | `str` | A string that defines the agent's area of expertise and task-handling capability.| +| `llm` | `callable` | The language model (LLM) used to process tasks (e.g., GPT-4). | +| `agent_name` | `str` | The name of the agent. | +| `system_prompt_embedding`| `tensor` | Embedding of the system prompt for similarity-based task matching. | +| `relevant_keywords` | `List[str]` | Keywords dynamically extracted from the system prompt to assist in task matching.| +| `distance` | `Optional[float]`| The computed distance between agents based on embedding similarity. | + +#### Methods + +| **Method** | **Input** | **Output** | **Description** | +|--------------------|---------------------------------|--------------------|---------------------------------------------------------------------------------| +| `calculate_distance(other_agent: TreeAgent)` | `other_agent: TreeAgent` | `float` | Calculates the cosine similarity between this agent and another agent. | +| `run_task(task: str)` | `task: str` | `Any` | Executes the task, logs the input/output, and returns the result. | +| `is_relevant_for_task(task: str, threshold: float = 0.7)` | `task: str, threshold: float` | `bool` | Checks if the agent is relevant for the task using keyword matching or embedding similarity.| + +--- + +### Class: `Tree` + +`Tree` organizes multiple agents into a hierarchical structure, where agents are sorted based on their relevance to tasks. + +#### Attributes + +| **Attribute** | **Type** | **Description** | +|--------------------------|------------------|---------------------------------------------------------------------------------| +| `tree_name` | `str` | The name of the tree (represents a domain of agents, e.g., "Financial Tree"). | +| `agents` | `List[TreeAgent]`| List of agents belonging to this tree. | + +#### Methods + +| **Method** | **Input** | **Output** | **Description** | +|--------------------|---------------------------------|--------------------|---------------------------------------------------------------------------------| +| `calculate_agent_distances()` | `None` | `None` | Calculates and assigns distances between agents based on similarity of prompts. | +| `find_relevant_agent(task: str)` | `task: str` | `Optional[TreeAgent]` | Finds the most relevant agent for a task based on keyword and embedding similarity. | +| `log_tree_execution(task: str, selected_agent: TreeAgent, result: Any)` | `task: str, selected_agent: TreeAgent, result: Any` | `None` | Logs details of the task execution by the selected agent. | + +--- + +### Class: `ForestSwarm` + +`ForestSwarm` is the main class responsible for managing multiple trees. It oversees task delegation by finding the most relevant tree and agent for a given task. + +#### Attributes + +| **Attribute** | **Type** | **Description** | +|--------------------------|------------------|---------------------------------------------------------------------------------| +| `trees` | `List[Tree]` | List of trees containing agents organized by domain. | + +#### Methods + +| **Method** | **Input** | **Output** | **Description** | +|--------------------|---------------------------------|--------------------|---------------------------------------------------------------------------------| +| `find_relevant_tree(task: str)` | `task: str` | `Optional[Tree]` | Searches across all trees to find the most relevant tree based on task requirements.| +| `run(task: str)` | `task: str` | `Any` | Executes the task by finding the most relevant agent from the relevant tree. | + +## Full Code Example + +--- + +## Example Workflow + +1. **Create Agents**: Agents are initialized with varying system prompts, representing different areas of expertise (e.g., stock analysis, tax filing). +2. **Create Trees**: Agents are grouped into trees, with each tree representing a domain (e.g., "Financial Tree", "Investment Tree"). +3. **Run Task**: When a task is submitted, the system traverses through all trees and finds the most relevant agent to handle the task. +4. **Task Execution**: The selected agent processes the task, and the result is returned. + +```plaintext +Task: "Our company is incorporated in Delaware, how do we do our taxes for free?" +``` + +**Process**: +- The system searches through the `Financial Tree` and `Investment Tree`. +- The most relevant agent (likely the "Tax Filing Agent") is selected based on keyword matching and prompt similarity. +- The task is processed, and the result is logged and returned. + +--- + +## Analysis of the Swarm Architecture + +The **Swarm Architecture** leverages a hierarchical structure (forest) composed of individual trees, each containing agents specialized in specific domains. This design allows for: + +- **Modular and Scalable Organization**: By separating agents into trees, it is easy to expand or contract the system by adding or removing trees or agents. +- **Task Specialization**: Each agent is specialized, which ensures that tasks are matched with the most appropriate agent based on relevance and expertise. +- **Dynamic Matching**: The architecture uses both keyword-based and embedding-based matching to assign tasks, ensuring a high level of accuracy in agent selection. +- **Logging and Accountability**: Each task execution is logged in detail, providing transparency and an audit trail of which agent handled which task and the results produced. +- **Asynchronous Task Execution**: The architecture can be adapted for asynchronous task processing, making it scalable and suitable for large-scale task handling in real-time systems. + +--- + +## Mermaid Diagram of the Swarm Architecture + +```mermaid +graph TD + A[ForestSwarm] --> B[Financial Tree] + A --> C[Investment Tree] + + B --> D[Stock Analysis Agent] + B --> E[Financial Planning Agent] + B --> F[Retirement Strategy Agent] + + C --> G[Tax Filing Agent] + C --> H[Investment Strategy Agent] + C --> I[ROTH IRA Agent] + + subgraph Tree Agents + D[Stock Analysis Agent] + E[Financial Planning Agent] + F[Retirement Strategy Agent] + G[Tax Filing Agent] + H[Investment Strategy Agent] + I[ROTH IRA Agent] + end +``` + +### Explanation of the Diagram + +- **ForestSwarm**: Represents the top-level structure managing multiple trees. +- **Trees**: In the example, two trees exist—**Financial Tree** and **Investment Tree**—each containing agents related to specific domains. +- **Agents**: Each agent within the tree is responsible for handling tasks in its area of expertise. Agents within a tree are organized based on their prompt similarity (distance). + +--- + +### Summary + +This **Multi-Agent Tree Structure** provides an efficient, scalable, and accurate architecture for delegating and executing tasks based on domain-specific expertise. The combination of hierarchical organization, dynamic task matching, and logging ensures reliability, performance, and transparency in task execution. \ No newline at end of file diff --git a/forest_swarm_example.py b/forest_swarm_example.py new file mode 100644 index 00000000..baddf82a --- /dev/null +++ b/forest_swarm_example.py @@ -0,0 +1,44 @@ +from swarms.structs.tree_swarm import TreeAgent, Tree, ForestSwarm +# Example Usage: + +# Create agents with varying system prompts and dynamically generated distances/keywords +agents_tree1 = [ + TreeAgent( + system_prompt="Stock Analysis Agent", + agent_name="Stock Analysis Agent", + ), + TreeAgent( + system_prompt="Financial Planning Agent", + agent_name="Financial Planning Agent", + ), + TreeAgent( + agent_name="Retirement Strategy Agent", + system_prompt="Retirement Strategy Agent", + ), +] + +agents_tree2 = [ + TreeAgent( + system_prompt="Tax Filing Agent", + agent_name="Tax Filing Agent", + ), + TreeAgent( + system_prompt="Investment Strategy Agent", + agent_name="Investment Strategy Agent", + ), + TreeAgent( + system_prompt="ROTH IRA Agent", agent_name="ROTH IRA Agent" + ), +] + +# Create trees +tree1 = Tree(tree_name="Financial Tree", agents=agents_tree1) +tree2 = Tree(tree_name="Investment Tree", agents=agents_tree2) + +# Create the ForestSwarm +multi_agent_structure = ForestSwarm(trees=[tree1, tree2]) + +# Run a task +task = "Our company is incorporated in delaware, how do we do our taxes for free?" +output = multi_agent_structure.run(task) +print(output) diff --git a/sap.py b/sap.py new file mode 100644 index 00000000..4fca469b --- /dev/null +++ b/sap.py @@ -0,0 +1,360 @@ +import asyncio +import os +import uuid +from datetime import datetime +from typing import Any, Dict, List, Optional + +import chromadb +from dotenv import load_dotenv +from loguru import logger +from pydantic import BaseModel, Field +from swarm_models import OpenAIChat + +from swarms import Agent +from swarms.prompts.finance_agent_sys_prompt import ( + FINANCIAL_AGENT_SYS_PROMPT, +) + +load_dotenv() + +# Initialize ChromaDB client +chroma_client = chromadb.Client() + +# Create a ChromaDB collection to store tasks, responses, and all swarm activity +swarm_collection = chroma_client.create_collection( + name="swarm_activity" +) + + +class InteractionLog(BaseModel): + """ + Pydantic model to log all interactions between agents, tasks, and responses. + """ + + interaction_id: str = Field( + default_factory=lambda: str(uuid.uuid4()), + description="Unique ID for the interaction.", + ) + agent_name: str + task: str + timestamp: datetime = Field(default_factory=datetime.utcnow) + response: Optional[Dict[str, Any]] = None + status: str = Field( + description="The status of the interaction, e.g., 'completed', 'failed'." + ) + neighbors: Optional[List[str]] = ( + None # Names of neighboring agents involved + ) + conversation_id: Optional[str] = Field( + default_factory=lambda: str(uuid.uuid4()), + description="Unique ID for the conversation history.", + ) + + +class AgentHealthStatus(BaseModel): + """ + Pydantic model to log and monitor agent health. + """ + + agent_name: str + timestamp: datetime = Field(default_factory=datetime.utcnow) + status: str = Field( + default="available", + description="Agent health status, e.g., 'available', 'busy', 'failed'.", + ) + active_tasks: int = Field( + 0, + description="Number of active tasks assigned to this agent.", + ) + load: float = Field( + 0.0, + description="Current load on the agent (CPU or memory usage).", + ) + + +class Swarm: + """ + A scalable swarm architecture where agents can communicate by posting and querying all activities to ChromaDB. + Every input task, response, and action by the agents is logged to the vector database for persistent tracking. + + Attributes: + agents (List[Agent]): A list of initialized agents. + chroma_client (chroma.Client): An instance of the ChromaDB client for agent-to-agent communication. + api_key (str): The OpenAI API key. + health_statuses (Dict[str, AgentHealthStatus]): A dictionary to monitor agent health statuses. + """ + + def __init__( + self, + agents: List[Agent], + chroma_client: chromadb.Client, + api_key: str, + ) -> None: + """ + Initializes the swarm with agents and a ChromaDB client for vector storage and communication. + + Args: + agents (List[Agent]): A list of initialized agents. + chroma_client (chroma.Client): The ChromaDB client for handling vector embeddings. + api_key (str): The OpenAI API key. + """ + self.agents = agents + self.chroma_client = chroma_client + self.api_key = api_key + self.health_statuses: Dict[str, AgentHealthStatus] = { + agent.agent_name: AgentHealthStatus( + agent_name=agent.agent_name + ) + for agent in agents + } + logger.info(f"Swarm initialized with {len(agents)} agents.") + + def _log_to_db( + self, data: Dict[str, Any], description: str + ) -> None: + """ + Logs a dictionary of data into the ChromaDB collection as a new entry. + + Args: + data (Dict[str, Any]): The data to log in the database (task, response, etc.). + description (str): Description of the action (e.g., 'task', 'response'). + """ + logger.info(f"Logging {description} to the database: {data}") + swarm_collection.add( + documents=[str(data)], + ids=[str(uuid.uuid4())], # Unique ID for each entry + metadatas=[ + { + "description": description, + "timestamp": datetime.utcnow().isoformat(), + } + ], + ) + logger.info( + f"{description.capitalize()} logged successfully." + ) + + async def _find_most_relevant_agent( + self, task: str + ) -> Optional[Agent]: + """ + Finds the agent whose system prompt is most relevant to the given task by querying ChromaDB. + If no relevant agents are found, return None and log a message. + + Args: + task (str): The task for which to find the most relevant agent. + + Returns: + Optional[Agent]: The most relevant agent for the task, or None if no relevant agent is found. + """ + logger.info( + f"Searching for the most relevant agent for the task: {task}" + ) + + # Query ChromaDB collection for nearest neighbor to the task + result = swarm_collection.query( + query_texts=[task], n_results=4 + ) + + # Check if the query result contains any data + if not result["ids"] or not result["ids"][0]: + logger.error( + "No relevant agents found for the given task." + ) + return None # No agent found, return None + + # Extract the agent ID from the result and find the corresponding agent + agent_id = result["ids"][0][0] + most_relevant_agent = next( + ( + agent + for agent in self.agents + if agent.agent_name == agent_id + ), + None, + ) + + if most_relevant_agent: + logger.info( + f"Most relevant agent for task '{task}' is {most_relevant_agent.agent_name}." + ) + else: + logger.error("No matching agent found in the agent list.") + + return most_relevant_agent + + def _monitor_health(self, agent: Agent) -> None: + """ + Monitors the health status of agents and logs it to the database. + + Args: + agent (Agent): The agent whose health is being monitored. + """ + current_status = self.health_statuses[agent.agent_name] + current_status.active_tasks += ( + 1 # Example increment for active tasks + ) + current_status.status = ( + "busy" if current_status.active_tasks > 0 else "available" + ) + current_status.load = 0.5 # Placeholder for real load data + logger.info( + f"Agent {agent.agent_name} is currently {current_status.status} with load {current_status.load}." + ) + + # Log health status to the database + self._log_to_db(current_status.dict(), "health status") + + def post_message(self, agent: Agent, message: str) -> None: + """ + Posts a message from an agent to the shared database. + + Args: + agent (Agent): The agent posting the message. + message (str): The message to be posted. + """ + logger.info( + f"Agent {agent.agent_name} posting message: {message}" + ) + message_data = { + "agent_name": agent.agent_name, + "message": message, + "timestamp": datetime.utcnow().isoformat(), + } + self._log_to_db(message_data, "message") + + def query_messages( + self, query: str, n_results: int = 5 + ) -> List[Dict[str, Any]]: + """ + Queries the database for relevant messages. + + Args: + query (str): The query message or task for which to retrieve related messages. + n_results (int, optional): The number of relevant messages to retrieve. Defaults to 5. + + Returns: + List[Dict[str, Any]]: A list of relevant messages and their metadata. + """ + logger.info(f"Querying the database for query: {query}") + results = swarm_collection.query( + query_texts=[query], n_results=n_results + ) + logger.info( + f"Found {len(results['documents'])} relevant messages." + ) + return results + + async def run_async(self, task: str) -> None: + """ + Main entry point to find the most relevant agent, submit the task, and allow agents to + query the database to understand the task's history. Logs every task and response. + + Args: + task (str): The task to be completed. + """ + # Query past messages to understand task history + past_messages = self.query_messages(task) + logger.info( + f"Past messages related to task '{task}': {past_messages}" + ) + + # Find the most relevant agent + agent = await self._find_most_relevant_agent(task) + + if agent is None: + logger.error( + f"No relevant agent found for task: {task}. Task submission aborted." + ) + return # Exit the function if no relevant agent is found + + # Submit the task to the agent if found + await self._submit_task_to_agent(agent, task) + + async def _submit_task_to_agent( + self, agent: Agent, task: str + ) -> Dict[str, Any]: + """ + Submits a task to the specified agent and logs the result asynchronously. + + Args: + agent (Agent): The agent to which the task will be submitted. + task (str): The task to be solved. + + Returns: + Dict[str, Any]: The result of the task from the agent. + """ + if agent is None: + logger.error("No agent provided for task submission.") + return + + logger.info( + f"Submitting task '{task}' to agent {agent.agent_name}." + ) + + interaction_log = InteractionLog( + agent_name=agent.agent_name, task=task, status="started" + ) + + # Log the task as a message to the shared database + self._log_to_db( + {"task": task, "agent_name": agent.agent_name}, "task" + ) + + result = await agent.run(task) + + interaction_log.response = result + interaction_log.status = "completed" + interaction_log.timestamp = datetime.utcnow() + + logger.info( + f"Task completed by agent {agent.agent_name}. Logged interaction: {interaction_log.dict()}" + ) + + # Log the result as a message to the shared database + self._log_to_db( + {"response": result, "agent_name": agent.agent_name}, + "response", + ) + + return result + + def run(self, task: str, *args, **kwargs): + return asyncio.run(self.run_async(task)) + + +# Initialize the OpenAI model and agents +api_key = os.getenv("OPENAI_API_KEY") + +model = OpenAIChat( + openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 +) + +# Example agent creation +agent = Agent( + agent_name="Financial-Analysis-Agent", + system_prompt=FINANCIAL_AGENT_SYS_PROMPT, + llm=model, + max_loops=1, + autosave=True, + dashboard=False, + verbose=True, + dynamic_temperature_enabled=True, + saved_state_path="finance_agent.json", + user_name="swarms_corp", + retry_attempts=1, + context_length=200000, + return_step_meta=False, +) + +# Example agents list +agents_list = [agent] + +# Create the swarm +swarm = Swarm( + agents=agents_list, chroma_client=chroma_client, api_key=api_key +) + +# Execute tasks asynchronously +task = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?" +print(swarm.run(task)) diff --git a/swarms/agents/__init__.py b/swarms/agents/__init__.py index 7e1c4bbb..d148cbb7 100644 --- a/swarms/agents/__init__.py +++ b/swarms/agents/__init__.py @@ -11,7 +11,9 @@ from swarms.agents.stopping_conditions import ( check_success, ) from swarms.agents.tool_agent import ToolAgent -from swarms.agents.create_agents_from_yaml import create_agents_from_yaml +from swarms.agents.create_agents_from_yaml import ( + create_agents_from_yaml, +) __all__ = [ diff --git a/swarms/agents/create_agents_from_yaml.py b/swarms/agents/create_agents_from_yaml.py index 1963598c..dcf8cad7 100644 --- a/swarms/agents/create_agents_from_yaml.py +++ b/swarms/agents/create_agents_from_yaml.py @@ -1,21 +1,26 @@ import os + import yaml +from dotenv import load_dotenv from loguru import logger -from swarms.structs.agent import Agent from swarm_models import OpenAIChat -from dotenv import load_dotenv + +from swarms.structs.agent import Agent load_dotenv() + # Function to create and optionally run agents from a YAML file -def create_agents_from_yaml(yaml_file: str, return_type: str = "agents", *args, **kwargs): +def create_agents_from_yaml( + yaml_file: str, return_type: str = "agents", *args, **kwargs +): """ - Create agents based on configurations defined in a YAML file. + Create agents based on configurations defined in a YAML file. If a 'task' is provided in the YAML, the agent will execute the task after creation. Args: yaml_file (str): Path to the YAML file containing agent configurations. - return_type (str): Determines the return value. "agents" to return agent list, + return_type (str): Determines the return value. "agents" to return agent list, "tasks" to return task results, "both" to return both agents and tasks. *args: Additional positional arguments for agent customization. **kwargs: Additional keyword arguments for agent customization. @@ -24,35 +29,45 @@ def create_agents_from_yaml(yaml_file: str, return_type: str = "agents", *args, List[Agent] or List[Task Results] or Tuple(List[Agent], List[Task Results]) """ logger.info(f"Checking if the YAML file {yaml_file} exists...") - + # Check if the YAML file exists if not os.path.exists(yaml_file): logger.error(f"YAML file {yaml_file} not found.") raise FileNotFoundError(f"YAML file {yaml_file} not found.") - + # Load the YAML configuration logger.info(f"Loading YAML file {yaml_file}") - with open(yaml_file, 'r') as file: + with open(yaml_file, "r") as file: config = yaml.safe_load(file) # Ensure agents key exists if "agents" not in config: - logger.error("The YAML configuration does not contain 'agents'.") - raise ValueError("The YAML configuration does not contain 'agents'.") + logger.error( + "The YAML configuration does not contain 'agents'." + ) + raise ValueError( + "The YAML configuration does not contain 'agents'." + ) # List to store created agents and task results agents = [] task_results = [] - + # Iterate over each agent configuration and create agents for agent_config in config["agents"]: logger.info(f"Creating agent: {agent_config['agent_name']}") # Get the OpenAI API key from environment or YAML config - api_key = os.getenv("OPENAI_API_KEY") or agent_config["model"].get("openai_api_key") + api_key = os.getenv("OPENAI_API_KEY") or agent_config[ + "model" + ].get("openai_api_key") if not api_key: - logger.error(f"API key is missing for agent: {agent_config['agent_name']}") - raise ValueError(f"API key is missing for agent: {agent_config['agent_name']}") + logger.error( + f"API key is missing for agent: {agent_config['agent_name']}" + ) + raise ValueError( + f"API key is missing for agent: {agent_config['agent_name']}" + ) # Create an instance of OpenAIChat model model = OpenAIChat( @@ -60,23 +75,38 @@ def create_agents_from_yaml(yaml_file: str, return_type: str = "agents", *args, model_name=agent_config["model"]["model_name"], temperature=agent_config["model"]["temperature"], max_tokens=agent_config["model"]["max_tokens"], - *args, **kwargs # Pass any additional arguments to the model + *args, + **kwargs, # Pass any additional arguments to the model ) # Ensure the system prompt is provided if "system_prompt" not in agent_config: - logger.error(f"System prompt is missing for agent: {agent_config['agent_name']}") - raise ValueError(f"System prompt is missing for agent: {agent_config['agent_name']}") + logger.error( + f"System prompt is missing for agent: {agent_config['agent_name']}" + ) + raise ValueError( + f"System prompt is missing for agent: {agent_config['agent_name']}" + ) # Dynamically choose the system prompt based on the agent config try: - system_prompt = globals().get(agent_config["system_prompt"]) + system_prompt = globals().get( + agent_config["system_prompt"] + ) if not system_prompt: - logger.error(f"System prompt {agent_config['system_prompt']} not found.") - raise ValueError(f"System prompt {agent_config['system_prompt']} not found.") + logger.error( + f"System prompt {agent_config['system_prompt']} not found." + ) + raise ValueError( + f"System prompt {agent_config['system_prompt']} not found." + ) except KeyError: - logger.error(f"System prompt {agent_config['system_prompt']} is not valid.") - raise ValueError(f"System prompt {agent_config['system_prompt']} is not valid.") + logger.error( + f"System prompt {agent_config['system_prompt']} is not valid." + ) + raise ValueError( + f"System prompt {agent_config['system_prompt']} is not valid." + ) # Initialize the agent using the configuration agent = Agent( @@ -87,38 +117,55 @@ def create_agents_from_yaml(yaml_file: str, return_type: str = "agents", *args, autosave=agent_config.get("autosave", True), dashboard=agent_config.get("dashboard", False), verbose=agent_config.get("verbose", False), - dynamic_temperature_enabled=agent_config.get("dynamic_temperature_enabled", False), + dynamic_temperature_enabled=agent_config.get( + "dynamic_temperature_enabled", False + ), saved_state_path=agent_config.get("saved_state_path"), user_name=agent_config.get("user_name", "default_user"), retry_attempts=agent_config.get("retry_attempts", 1), context_length=agent_config.get("context_length", 100000), - return_step_meta=agent_config.get("return_step_meta", False), + return_step_meta=agent_config.get( + "return_step_meta", False + ), output_type=agent_config.get("output_type", "str"), - *args, **kwargs # Pass any additional arguments to the agent + *args, + **kwargs, # Pass any additional arguments to the agent ) - logger.info(f"Agent {agent_config['agent_name']} created successfully.") + logger.info( + f"Agent {agent_config['agent_name']} created successfully." + ) agents.append(agent) # Check if a task is provided, and if so, run the agent task = agent_config.get("task") if task: - logger.info(f"Running task '{task}' with agent {agent_config['agent_name']}") + logger.info( + f"Running task '{task}' with agent {agent_config['agent_name']}" + ) try: output = agent.run(task) - logger.info(f"Output for agent {agent_config['agent_name']}: {output}") - task_results.append({ - "agent_name": agent_config["agent_name"], - "task": task, - "output": output - }) + logger.info( + f"Output for agent {agent_config['agent_name']}: {output}" + ) + task_results.append( + { + "agent_name": agent_config["agent_name"], + "task": task, + "output": output, + } + ) except Exception as e: - logger.error(f"Error running task for agent {agent_config['agent_name']}: {e}") - task_results.append({ - "agent_name": agent_config["agent_name"], - "task": task, - "error": str(e) - }) + logger.error( + f"Error running task for agent {agent_config['agent_name']}: {e}" + ) + task_results.append( + { + "agent_name": agent_config["agent_name"], + "task": task, + "error": str(e), + } + ) # Return results based on the `return_type` if return_type == "agents": @@ -131,6 +178,7 @@ def create_agents_from_yaml(yaml_file: str, return_type: str = "agents", *args, logger.error(f"Invalid return_type: {return_type}") raise ValueError(f"Invalid return_type: {return_type}") + # # Usage example # yaml_file = 'agents_config.yaml' @@ -141,7 +189,7 @@ def create_agents_from_yaml(yaml_file: str, return_type: str = "agents", *args, # # Example: Print task results # for result in task_results: # print(f"Agent: {result['agent_name']} | Task: {result['task']} | Output: {result.get('output', 'Error encountered')}") - + # except FileNotFoundError as e: # logger.error(f"Error: {e}") # except ValueError as e: diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index c6131bc1..f5cea2cd 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -522,12 +522,15 @@ class Agent: # Telemetry Processor to log agent data threading.Thread(target=self.log_agent_data).start() - - + if load_yaml_path is not None: - from swarms.agents.create_agents_from_yaml import create_agents_from_yaml - - create_agents_from_yaml(load_yaml_path, return_type="tasks") + from swarms.agents.create_agents_from_yaml import ( + create_agents_from_yaml, + ) + + create_agents_from_yaml( + load_yaml_path, return_type="tasks" + ) def set_system_prompt(self, system_prompt: str): """Set the system prompt""" diff --git a/swarms/structs/tree_swarm.py b/swarms/structs/tree_swarm.py new file mode 100644 index 00000000..5f431745 --- /dev/null +++ b/swarms/structs/tree_swarm.py @@ -0,0 +1,362 @@ +import os +import uuid +from collections import Counter +from datetime import datetime +from typing import Any, List, Optional + +from dotenv import load_dotenv +from loguru import logger +from pydantic import BaseModel, Field +from sentence_transformers import SentenceTransformer, util +from swarm_models import OpenAIChat + +from swarms import Agent + +load_dotenv() + +# Get the OpenAI API key from the environment variable +api_key = os.getenv("OPENAI_API_KEY") + +# # Set up loguru to log into a file and console +# logger.add( +# "multi_agent_log_{time}.log", +# format="{time} {level} {message}", +# level="DEBUG", +# rotation="10 MB", +# ) + +# Pretrained model for embeddings +embedding_model = SentenceTransformer( + "all-MiniLM-L6-v2" +) # A small, fast model for embedding + +# Create an instance of the OpenAIChat class +model = OpenAIChat( + openai_api_key=api_key, + model_name="gpt-4o-mini", + temperature=0.1, + max_tokens=2000, +) + + +# Pydantic Models for Logging +class AgentLogInput(BaseModel): + log_id: str = Field( + default_factory=lambda: str(uuid.uuid4()), alias="id" + ) + agent_name: str + task: str + timestamp: datetime = Field(default_factory=datetime.utcnow) + + +class AgentLogOutput(BaseModel): + log_id: str = Field( + default_factory=lambda: str(uuid.uuid4()), alias="id" + ) + agent_name: str + result: Any + timestamp: datetime = Field(default_factory=datetime.utcnow) + + +class TreeLog(BaseModel): + log_id: str = Field( + default_factory=lambda: str(uuid.uuid4()), alias="id" + ) + tree_name: str + task: str + selected_agent: str + timestamp: datetime = Field(default_factory=datetime.utcnow) + result: Any + + +def extract_keywords(prompt: str, top_n: int = 5) -> List[str]: + """ + A simplified keyword extraction function using basic word splitting instead of NLTK tokenization. + """ + words = prompt.lower().split() + filtered_words = [word for word in words if word.isalnum()] + word_counts = Counter(filtered_words) + return [word for word, _ in word_counts.most_common(top_n)] + + +class TreeAgent(Agent): + """ + A specialized Agent class that contains information about the system prompt's + locality and allows for dynamic chaining of agents in trees. + """ + + def __init__( + self, + system_prompt: str = None, + llm: callable = model, + agent_name: Optional[str] = None, + *args, + **kwargs, + ): + agent_name = agent_name + super().__init__( + system_prompt=system_prompt, + llm=llm, + agent_name=agent_name, + *args, + **kwargs, + ) + self.system_prompt_embedding = embedding_model.encode( + system_prompt, convert_to_tensor=True + ) + + # Automatically extract keywords from system prompt + self.relevant_keywords = extract_keywords(system_prompt) + + # Distance is now calculated based on similarity between agents' prompts + self.distance = None # Will be dynamically calculated later + + def calculate_distance(self, other_agent: "TreeAgent") -> float: + """ + Calculate the distance between this agent and another agent using embedding similarity. + + Args: + other_agent (TreeAgent): Another agent in the tree. + + Returns: + float: Distance score between 0 and 1, with 0 being close and 1 being far. + """ + similarity = util.pytorch_cos_sim( + self.system_prompt_embedding, + other_agent.system_prompt_embedding, + ).item() + distance = ( + 1 - similarity + ) # Closer agents have a smaller distance + return distance + + def run_task(self, task: str) -> Any: + input_log = AgentLogInput( + agent_name=self.agent_name, + task=task, + timestamp=datetime.now(), + ) + logger.info(f"Running task on {self.agent_name}: {task}") + logger.debug(f"Input Log: {input_log.json()}") + + result = self.run(task) + + output_log = AgentLogOutput( + agent_name=self.agent_name, + result=result, + timestamp=datetime.now(), + ) + logger.info(f"Task result from {self.agent_name}: {result}") + logger.debug(f"Output Log: {output_log.json()}") + + return result + + def is_relevant_for_task( + self, task: str, threshold: float = 0.7 + ) -> bool: + """ + Checks if the agent is relevant for the given task using both keyword matching and embedding similarity. + + Args: + task (str): The task to be executed. + threshold (float): The cosine similarity threshold for embedding-based matching. + + Returns: + bool: True if the agent is relevant, False otherwise. + """ + # Check if any of the relevant keywords are present in the task (case-insensitive) + keyword_match = any( + keyword.lower() in task.lower() + for keyword in self.relevant_keywords + ) + + # Perform embedding similarity match if keyword match is not found + if not keyword_match: + task_embedding = embedding_model.encode( + task, convert_to_tensor=True + ) + similarity = util.pytorch_cos_sim( + self.system_prompt_embedding, task_embedding + ).item() + logger.info( + f"Semantic similarity between task and {self.agent_name}: {similarity:.2f}" + ) + return similarity >= threshold + + return True # Return True if keyword match is found + + +class Tree: + def __init__(self, tree_name: str, agents: List[TreeAgent]): + """ + Initializes a tree of agents. + + Args: + tree_name (str): The name of the tree. + agents (List[TreeAgent]): A list of agents in the tree. + """ + self.tree_name = tree_name + self.agents = agents + self.calculate_agent_distances() + + def calculate_agent_distances(self): + """ + Automatically calculate and assign distances between agents in the tree based on prompt similarity. + """ + logger.info( + f"Calculating distances between agents in tree '{self.tree_name}'" + ) + for i, agent in enumerate(self.agents): + if i > 0: + agent.distance = agent.calculate_distance( + self.agents[i - 1] + ) + else: + agent.distance = 0 # First agent is closest + + # Sort agents by distance after calculation + self.agents.sort(key=lambda agent: agent.distance) + + def find_relevant_agent(self, task: str) -> Optional[TreeAgent]: + """ + Finds the most relevant agent in the tree for the given task based on its system prompt. + Uses both keyword and semantic similarity matching. + + Args: + task (str): The task or query for which we need to find a relevant agent. + + Returns: + Optional[TreeAgent]: The most relevant agent, or None if no match found. + """ + logger.info( + f"Searching relevant agent in tree '{self.tree_name}' for task: {task}" + ) + for agent in self.agents: + if agent.is_relevant_for_task(task): + return agent + logger.warning( + f"No relevant agent found in tree '{self.tree_name}' for task: {task}" + ) + return None + + def log_tree_execution( + self, task: str, selected_agent: TreeAgent, result: Any + ) -> None: + """ + Logs the execution details of a tree, including selected agent and result. + """ + tree_log = TreeLog( + tree_name=self.tree_name, + task=task, + selected_agent=selected_agent.agent_name, + timestamp=datetime.now(), + result=result, + ) + logger.info( + f"Tree '{self.tree_name}' executed task with agent '{selected_agent.agent_name}'" + ) + logger.debug(f"Tree Log: {tree_log.json()}") + + +class ForestSwarm: + def __init__(self, trees: List[Tree], *args, **kwargs): + """ + Initializes the structure with multiple trees of agents. + + Args: + trees (List[Tree]): A list of trees in the structure. + """ + self.trees = trees + # Add auto grouping based on trees. + # Add auto group agents + + + def find_relevant_tree(self, task: str) -> Optional[Tree]: + """ + Finds the most relevant tree based on the given task. + + Args: + task (str): The task or query for which we need to find a relevant tree. + + Returns: + Optional[Tree]: The most relevant tree, or None if no match found. + """ + logger.info( + f"Searching for the most relevant tree for task: {task}" + ) + for tree in self.trees: + if tree.find_relevant_agent(task): + return tree + logger.warning(f"No relevant tree found for task: {task}") + return None + + def run(self, task: str) -> Any: + """ + Executes the given task by finding the most relevant tree and agent within that tree. + + Args: + task (str): The task or query to be executed. + + Returns: + Any: The result of the task after it has been processed by the agents. + """ + logger.info( + f"Running task across MultiAgentTreeStructure: {task}" + ) + relevant_tree = self.find_relevant_tree(task) + if relevant_tree: + agent = relevant_tree.find_relevant_agent(task) + if agent: + result = agent.run_task(task) + relevant_tree.log_tree_execution(task, agent, result) + return result + else: + logger.error( + "Task could not be completed: No relevant agent or tree found." + ) + return "No relevant agent found to handle this task." + + +# # Example Usage: + +# # Create agents with varying system prompts and dynamically generated distances/keywords +# agents_tree1 = [ +# TreeAgent( +# system_prompt="Stock Analysis Agent", +# agent_name="Stock Analysis Agent", +# ), +# TreeAgent( +# system_prompt="Financial Planning Agent", +# agent_name="Financial Planning Agent", +# ), +# TreeAgent( +# agent_name="Retirement Strategy Agent", +# system_prompt="Retirement Strategy Agent", +# ), +# ] + +# agents_tree2 = [ +# TreeAgent( +# system_prompt="Tax Filing Agent", +# agent_name="Tax Filing Agent", +# ), +# TreeAgent( +# system_prompt="Investment Strategy Agent", +# agent_name="Investment Strategy Agent", +# ), +# TreeAgent( +# system_prompt="ROTH IRA Agent", agent_name="ROTH IRA Agent" +# ), +# ] + +# # Create trees +# tree1 = Tree(tree_name="Financial Tree", agents=agents_tree1) +# tree2 = Tree(tree_name="Investment Tree", agents=agents_tree2) + +# # Create the ForestSwarm +# multi_agent_structure = ForestSwarm(trees=[tree1, tree2]) + +# # Run a task +# task = "Our company is incorporated in delaware, how do we do our taxes for free?" +# output = multi_agent_structure.run(task) +# print(output) diff --git a/tests/agents/test_create_agents_from_yaml.py b/tests/agents/test_create_agents_from_yaml.py index 93dfadd6..4e7e61df 100644 --- a/tests/agents/test_create_agents_from_yaml.py +++ b/tests/agents/test_create_agents_from_yaml.py @@ -3,12 +3,13 @@ from unittest.mock import patch from swarms import create_agents_from_yaml import os + class TestCreateAgentsFromYaml(unittest.TestCase): def setUp(self): # Mock the environment variable for API key - os.environ['OPENAI_API_KEY'] = 'fake-api-key' - + os.environ["OPENAI_API_KEY"] = "fake-api-key" + # Mock agent configuration YAML content self.valid_yaml_content = """ agents: @@ -52,10 +53,16 @@ class TestCreateAgentsFromYaml(unittest.TestCase): output_type: "json" task: "What is the best strategy for long-term stock investment?" """ - - @patch('builtins.open', new_callable=unittest.mock.mock_open, read_data="") - @patch('yaml.safe_load') - def test_create_agents_return_agents(self, mock_safe_load, mock_open): + + @patch( + "builtins.open", + new_callable=unittest.mock.mock_open, + read_data="", + ) + @patch("yaml.safe_load") + def test_create_agents_return_agents( + self, mock_safe_load, mock_open + ): # Mock YAML content parsing mock_safe_load.return_value = { "agents": [ @@ -65,7 +72,7 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "openai_api_key": "fake-api-key", "model_name": "gpt-4o-mini", "temperature": 0.1, - "max_tokens": 2000 + "max_tokens": 2000, }, "system_prompt": "financial_agent_sys_prompt", "max_loops": 1, @@ -79,20 +86,32 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "context_length": 200000, "return_step_meta": False, "output_type": "str", - "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?" + "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?", } ] } # Test if agents are returned correctly - agents = create_agents_from_yaml('fake_yaml_path.yaml', return_type="agents") + agents = create_agents_from_yaml( + "fake_yaml_path.yaml", return_type="agents" + ) self.assertEqual(len(agents), 1) - self.assertEqual(agents[0].agent_name, "Financial-Analysis-Agent") + self.assertEqual( + agents[0].agent_name, "Financial-Analysis-Agent" + ) - @patch('builtins.open', new_callable=unittest.mock.mock_open, read_data="") - @patch('yaml.safe_load') - @patch('swarms.Agent.run', return_value="Task completed successfully") - def test_create_agents_return_tasks(self, mock_agent_run, mock_safe_load, mock_open): + @patch( + "builtins.open", + new_callable=unittest.mock.mock_open, + read_data="", + ) + @patch("yaml.safe_load") + @patch( + "swarms.Agent.run", return_value="Task completed successfully" + ) + def test_create_agents_return_tasks( + self, mock_agent_run, mock_safe_load, mock_open + ): # Mock YAML content parsing mock_safe_load.return_value = { "agents": [ @@ -102,7 +121,7 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "openai_api_key": "fake-api-key", "model_name": "gpt-4o-mini", "temperature": 0.1, - "max_tokens": 2000 + "max_tokens": 2000, }, "system_prompt": "financial_agent_sys_prompt", "max_loops": 1, @@ -116,20 +135,30 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "context_length": 200000, "return_step_meta": False, "output_type": "str", - "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?" + "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?", } ] } # Test if tasks are executed and results are returned - task_results = create_agents_from_yaml('fake_yaml_path.yaml', return_type="tasks") + task_results = create_agents_from_yaml( + "fake_yaml_path.yaml", return_type="tasks" + ) self.assertEqual(len(task_results), 1) - self.assertEqual(task_results[0]['agent_name'], "Financial-Analysis-Agent") - self.assertIsNotNone(task_results[0]['output']) + self.assertEqual( + task_results[0]["agent_name"], "Financial-Analysis-Agent" + ) + self.assertIsNotNone(task_results[0]["output"]) - @patch('builtins.open', new_callable=unittest.mock.mock_open, read_data="") - @patch('yaml.safe_load') - def test_create_agents_return_both(self, mock_safe_load, mock_open): + @patch( + "builtins.open", + new_callable=unittest.mock.mock_open, + read_data="", + ) + @patch("yaml.safe_load") + def test_create_agents_return_both( + self, mock_safe_load, mock_open + ): # Mock YAML content parsing mock_safe_load.return_value = { "agents": [ @@ -139,7 +168,7 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "openai_api_key": "fake-api-key", "model_name": "gpt-4o-mini", "temperature": 0.1, - "max_tokens": 2000 + "max_tokens": 2000, }, "system_prompt": "financial_agent_sys_prompt", "max_loops": 1, @@ -153,31 +182,48 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "context_length": 200000, "return_step_meta": False, "output_type": "str", - "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?" + "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?", } ] } # Test if both agents and tasks are returned - agents, task_results = create_agents_from_yaml('fake_yaml_path.yaml', return_type="both") + agents, task_results = create_agents_from_yaml( + "fake_yaml_path.yaml", return_type="both" + ) self.assertEqual(len(agents), 1) self.assertEqual(len(task_results), 1) - self.assertEqual(agents[0].agent_name, "Financial-Analysis-Agent") - self.assertIsNotNone(task_results[0]['output']) + self.assertEqual( + agents[0].agent_name, "Financial-Analysis-Agent" + ) + self.assertIsNotNone(task_results[0]["output"]) - @patch('builtins.open', new_callable=unittest.mock.mock_open, read_data="") - @patch('yaml.safe_load') + @patch( + "builtins.open", + new_callable=unittest.mock.mock_open, + read_data="", + ) + @patch("yaml.safe_load") def test_missing_agents_in_yaml(self, mock_safe_load, mock_open): # Mock YAML content with missing "agents" key mock_safe_load.return_value = {} # Test if the function raises an error for missing "agents" key with self.assertRaises(ValueError) as context: - create_agents_from_yaml('fake_yaml_path.yaml', return_type="agents") - self.assertTrue("The YAML configuration does not contain 'agents'." in str(context.exception)) + create_agents_from_yaml( + "fake_yaml_path.yaml", return_type="agents" + ) + self.assertTrue( + "The YAML configuration does not contain 'agents'." + in str(context.exception) + ) - @patch('builtins.open', new_callable=unittest.mock.mock_open, read_data="") - @patch('yaml.safe_load') + @patch( + "builtins.open", + new_callable=unittest.mock.mock_open, + read_data="", + ) + @patch("yaml.safe_load") def test_invalid_return_type(self, mock_safe_load, mock_open): # Mock YAML content parsing mock_safe_load.return_value = { @@ -188,7 +234,7 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "openai_api_key": "fake-api-key", "model_name": "gpt-4o-mini", "temperature": 0.1, - "max_tokens": 2000 + "max_tokens": 2000, }, "system_prompt": "financial_agent_sys_prompt", "max_loops": 1, @@ -202,15 +248,20 @@ class TestCreateAgentsFromYaml(unittest.TestCase): "context_length": 200000, "return_step_meta": False, "output_type": "str", - "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?" + "task": "How can I establish a ROTH IRA to buy stocks and get a tax break?", } ] } # Test if an error is raised for invalid return_type with self.assertRaises(ValueError) as context: - create_agents_from_yaml('fake_yaml_path.yaml', return_type="invalid_type") - self.assertTrue("Invalid return_type" in str(context.exception)) + create_agents_from_yaml( + "fake_yaml_path.yaml", return_type="invalid_type" + ) + self.assertTrue( + "Invalid return_type" in str(context.exception) + ) + -if __name__ == '__main__': +if __name__ == "__main__": unittest.main()