pull/590/head
Your Name 3 months ago
parent 4e0e9308e3
commit c5eab56eff

@ -18,21 +18,21 @@ agents:
return_step_meta: false
output_type: "str" # Can be "json" or any other format
# - agent_name: "Stock-Analysis-Agent"
# model:
# openai_api_key: "your_openai_api_key"
# model_name: "gpt-4o-mini"
# temperature: 0.2
# max_tokens: 1500
# system_prompt: "stock_agent_sys_prompt" # Reference to system prompt file
# max_loops: 2
# autosave: true
# dashboard: false
# verbose: true
# dynamic_temperature_enabled: false
# saved_state_path: "stock_agent.json"
# user_name: "stock_user"
# retry_attempts: 3
# context_length: 150000
# return_step_meta: true
# output_type: "str"
- agent_name: "Stock-Analysis-Agent"
model:
openai_api_key: "your_openai_api_key"
model_name: "gpt-4o-mini"
temperature: 0.2
max_tokens: 1500
system_prompt: "stock_agent_sys_prompt" # Reference to system prompt file
max_loops: 2
autosave: true
dashboard: false
verbose: true
dynamic_temperature_enabled: false
saved_state_path: "stock_agent.json"
user_name: "stock_user"
retry_attempts: 3
context_length: 150000
return_step_meta: true
output_type: "str"

@ -4,6 +4,9 @@ This documentation describes the **ForestSwarm** that organizes agents into tree
The architecture allows for efficient task assignment by selecting the most relevant agent from a set of trees. Tasks are processed asynchronously, with agents selected based on task relevance, calculated by the similarity of system prompts and task keywords.
## Module Path: `swarms.structs.tree_swarm`
---
### Class: `TreeAgent`

Loading…
Cancel
Save