diff --git a/README.md b/README.md index 05b0cbdb..f4f85753 100644 --- a/README.md +++ b/README.md @@ -1386,10 +1386,7 @@ SpreadSheetSwarm manages thousands of agents concurrently for efficient task pro [Learn more:](https://docs.swarms.world/en/latest/swarms/structs/spreadsheet_swarm/) ```python -import os from swarms import Agent, SpreadSheetSwarm -from swarm_models import OpenAIChat - # Define custom system prompts for each social media platform TWITTER_AGENT_SYS_PROMPT = """ You are a Twitter marketing expert specializing in real estate. Your task is to create engaging, concise tweets to promote properties, analyze trends to maximize engagement, and use appropriate hashtags and timing to reach potential buyers. @@ -1416,7 +1413,7 @@ agents = [ Agent( agent_name="Twitter-RealEstate-Agent", system_prompt=TWITTER_AGENT_SYS_PROMPT, - model_name="gpt-4o", + model_name="gpt-4o-mini", max_loops=1, dynamic_temperature_enabled=True, saved_state_path="twitter_realestate_agent.json", @@ -1426,7 +1423,7 @@ agents = [ Agent( agent_name="Instagram-RealEstate-Agent", system_prompt=INSTAGRAM_AGENT_SYS_PROMPT, - model_name="gpt-4o", + model_name="gpt-4o-mini", max_loops=1, dynamic_temperature_enabled=True, saved_state_path="instagram_realestate_agent.json", @@ -1436,7 +1433,7 @@ agents = [ Agent( agent_name="Facebook-RealEstate-Agent", system_prompt=FACEBOOK_AGENT_SYS_PROMPT, - model_name="gpt-4o", + model_name="gpt-4o-mini", max_loops=1, dynamic_temperature_enabled=True, saved_state_path="facebook_realestate_agent.json", @@ -1446,7 +1443,7 @@ agents = [ Agent( agent_name="LinkedIn-RealEstate-Agent", system_prompt=LINKEDIN_AGENT_SYS_PROMPT, - model_name="gpt-4o", + model_name="gpt-4o-mini", max_loops=1, dynamic_temperature_enabled=True, saved_state_path="linkedin_realestate_agent.json", @@ -1456,7 +1453,7 @@ agents = [ Agent( agent_name="Email-RealEstate-Agent", system_prompt=EMAIL_AGENT_SYS_PROMPT, - model_name="gpt-4o", + model_name="gpt-4o-mini", max_loops=1, dynamic_temperature_enabled=True, saved_state_path="email_realestate_agent.json", @@ -1920,32 +1917,18 @@ A production-grade multi-agent system enabling sophisticated group conversations ```python - -import os -from dotenv import load_dotenv -from swarm_models import OpenAIChat from swarms import Agent, GroupChat, expertise_based if __name__ == "__main__": - load_dotenv() - - # Get the OpenAI API key from the environment variable - api_key = os.getenv("OPENAI_API_KEY") - - # Create an instance of the OpenAIChat class - model = OpenAIChat( - openai_api_key=api_key, - model_name="gpt-4o-mini", - temperature=0.1, - ) # Example agents agent1 = Agent( agent_name="Financial-Analysis-Agent", system_prompt="You are a financial analyst specializing in investment strategies.", - llm=model, + model_name="gpt-4o-mini", + temperature=0.1, max_loops=1, autosave=False, dashboard=False, @@ -1961,7 +1944,8 @@ if __name__ == "__main__": agent2 = Agent( agent_name="Tax-Adviser-Agent", system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.", - llm=model, + model_name="gpt-4o-mini", + temperature=0.1, max_loops=1, autosave=False, dashboard=False, @@ -1986,7 +1970,8 @@ if __name__ == "__main__": history = chat.run( "How to optimize tax strategy for investments?" ) - print(history.model_dump_json(indent=2)) + print(history) + ```