diff --git a/swarms/swarms/swarms.py b/swarms/swarms/swarms.py index 9f0db913..82663896 100644 --- a/swarms/swarms/swarms.py +++ b/swarms/swarms/swarms.py @@ -9,23 +9,17 @@ from swarms.workers.worker_node import WorkerNode logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') -# TODO: Pass in abstract LLM class that can utilize Hf or Anthropic models, Move away from OPENAI -# TODO: ADD Universal Communication Layer, a ocean vectorstore instance -# TODO: BE MORE EXPLICIT ON TOOL USE, TASK DECOMPOSITION AND TASK COMPLETETION AND ALLOCATION -# TODO: Add RLHF Data collection, ask user how the swarm is performing -# TODO: Create an onboarding process if not settings are preconfigured like `from swarms import Swarm, Swarm()` => then initiate onboarding name your swarm + provide purpose + etc - # ---------- Constants ---------- ROOT_DIR = "./data/" + class HierarchicalSwarm: def __init__( self, openai_api_key: Optional[str] = "", use_vectorstore: Optional[bool] = True, - use_async: Optional[bool] = True, worker_name: Optional[str] = "Swarm Worker AI Assistant", verbose: Optional[bool] = False, @@ -34,14 +28,13 @@ class HierarchicalSwarm: worker_prompt: Optional[str] = None, temperature: Optional[float] = 0.5, max_iterations: Optional[int] = None, - logging_enabled: Optional[bool] = True): - + logging_enabled: Optional[bool] = True + ): self.openai_api_key = openai_api_key self.use_vectorstore = use_vectorstore self.use_async = use_async self.worker_name = worker_name self.human_in_the_loop = human_in_the_loop - self.boss_prompt = boss_prompt self.temperature = temperature self.max_iterations = max_iterations @@ -50,7 +43,6 @@ class HierarchicalSwarm: self.worker_node = WorkerNode( openai_api_key=self.openai_api_key, - # worker_name=self.worker_name, temperature=self.temperature, human_in_the_loop=self.human_in_the_loop, verbose=self.verbose @@ -85,9 +77,8 @@ class HierarchicalSwarm: def swarm( api_key: Optional[str]="", - objective: Optional[str]="", - ): - + objective: Optional[str]="" +): if not api_key or not isinstance(api_key, str): logging.error("Invalid OpenAI key") raise ValueError("A valid OpenAI API key is required") @@ -95,7 +86,7 @@ def swarm( logging.error("Invalid objective") raise ValueError("A valid objective is required") try: - swarms = HierarchicalSwarm(api_key, use_async=False) #logging_enabled=logging_enabled) # Turn off async + swarms = HierarchicalSwarm(api_key, use_async=False) result = swarms.run(objective) if result is None: logging.error("Failed to run swarms") @@ -104,4 +95,12 @@ def swarm( return result except Exception as e: logging.error(f"An error occured in swarm: {e}") - return None \ No newline at end of file + return None + + + +# TODO: Pass in abstract LLM class that can utilize Hf or Anthropic models, Move away from OPENAI +# TODO: ADD Universal Communication Layer, a ocean vectorstore instance +# TODO: BE MORE EXPLICIT ON TOOL USE, TASK DECOMPOSITION AND TASK COMPLETETION AND ALLOCATION +# TODO: Add RLHF Data collection, ask user how the swarm is performing +# TODO: Create an onboarding process if not settings are preconfigured like `from swarms import Swarm, Swarm()` => then initiate onboarding name your swarm + provide purpose + etc diff --git a/swarms/workers/worker_node.py b/swarms/workers/worker_node.py index 70b30c1b..74adb798 100644 --- a/swarms/workers/worker_node.py +++ b/swarms/workers/worker_node.py @@ -109,30 +109,94 @@ class WorkerNodeInitializer: raise e class WorkerNode: - def __init__(self, - openai_api_key: str, - temperature: int, - llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None, - tools: Optional[List[Tool]] = None, - # vectorstore: Optional[FAISS] = None, - embedding_size: Optional[int] = 4026, - worker_name: Optional[str] = "Swarm Worker AI Assistant", - worker_role: Optional[str] = "Assistant", - human_in_the_loop: Optional[bool] = False, - search_kwargs: dict = {}, - verbose: Optional[bool] = False, - chat_history_file: str = "chat_history.txt"): - + def __init__(self, + openai_api_key: str, + temperature: Optional[int] = None, + llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None, + tools: Optional[List[Tool]] = None, + embedding_size: Optional[int] = 8192, # Default value set as 8192 from WorkerNodeInitializer + worker_name: Optional[str] = "Swarm Worker AI Assistant", + worker_role: Optional[str] = "Assistant", + human_in_the_loop: Optional[bool] = False, + search_kwargs: dict = {}, + verbose: Optional[bool] = False, + chat_history_file: str = "chat_history.txt"): + if not openai_api_key: raise ValueError("openai_api_key cannot be None") - + self.openai_api_key = openai_api_key - self.worker_node_initializer = WorkerNodeInitializer(openai_api_key) - self.name = worker_name # Added a name attribute - self.description = "A worker node that executes tasks" # Added a description attribute - self.embedding_size = self.embedding_size + self.llm = llm if llm is not None else ChatOpenAI() + self.tools = tools if tools is not None else [ReadFileTool(), WriteFileTool()] + self.embedding_size = embedding_size + self.worker_name = worker_name + self.worker_role = worker_role + self.human_in_the_loop = human_in_the_loop + self.search_kwargs = search_kwargs + self.verbose = verbose + self.chat_history_file = chat_history_file + + # Properties from WorkerNode + self.temperature = temperature + self.description = "A worker node that executes tasks" + self.create_agent() + + def create_agent(self): + logging.info("Creating agent in WorkerNode") + try: + vectorstore = self.initialize_vectorstore() + + self.agent = AutoGPT.from_llm_and_tools( + ai_name=self.worker_name, + ai_role=self.worker_role, + tools=self.tools, + llm=self.llm, + memory=vectorstore, + human_in_the_loop=self.human_in_the_loop, + chat_history_memory=FileChatMessageHistory(self.chat_history_file), + ) + except Exception as e: + logging.error(f"Error while creating agent: {str(e)}") + raise e + + def add_tool(self, tool: Optional[Tool] = None): + if tool is None: + tool = DuckDuckGoSearchRun() + + if not isinstance(tool, Tool): + logging.error("Tool must be an instance of Tool.") + raise TypeError("Tool must be an instance of Tool.") + + self.tools.append(tool) + def initialize_vectorstore(self): + try: + embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) + embedding_size = self.embedding_size + index = faiss.IndexFlatL2(embedding_size=embedding_size) + return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) + + except Exception as e: + logging.error(f"Failed to initialize vector store: {e}") + return None + def run(self, prompt) -> str: + if not isinstance(prompt, str): + logging.error("Prompt must be a string.") + raise TypeError("Prompt must be a string.") + + if not prompt: + logging.error("Prompt is empty.") + raise ValueError("Prompt is empty.") + + try: + self.agent.run([f"{prompt}"]) + return "Task completed by WorkerNode" + except Exception as e: + logging.error(f"While running the agent: {str(e)}") + raise e + + # Functions from WorkerNode def initialize_llm(self, llm_class, temperature): if not llm_class: logging.error("llm_class cannot be none") @@ -144,14 +208,13 @@ class WorkerNode: logging.error(f"Failed to initialize language model: {e}") raise - def initialize_tools(self, llm_class): if not llm_class: logging.error("llm_class not cannot be none") raise ValueError("llm_class cannot be none") try: logging.info('Creating WorkerNode') - llm = self.initialize_llm(llm_class) + llm = self.initialize_llm(llm_class, self.temperature) # Passed self.temperature tools = [ web_search, @@ -173,10 +236,10 @@ class WorkerNode: raise ValueError("llm_class cannot be None.") try: worker_tools = self.initialize_tools(llm_class) - vectorstore = self.worker_node_initializer.initialize_vectorstore() - worker_node = WorkerNodeInitializer( - openai_api_key=self.openai_api_key, # pass the openai_api_key - llm=self.initialize_llm(llm_class), + vectorstore = self.initialize_vectorstore() + worker_node = UnifiedWorkerNode( + openai_api_key=self.openai_api_key, + llm=self.initialize_llm(llm_class, self.temperature), tools=worker_tools, vectorstore=vectorstore, ai_name=worker_name, @@ -190,8 +253,6 @@ class WorkerNode: logging.error(f"Failed to create worker node: {e}") raise - - def worker_node(openai_api_key): if not openai_api_key: logging.error("OpenAI API key is not provided")