diff --git a/playground/agents/agent_with_basemodel_output_type.py b/playground/agents/agent_with_basemodel_output_type.py index 541211bd..32b85b8b 100644 --- a/playground/agents/agent_with_basemodel_output_type.py +++ b/playground/agents/agent_with_basemodel_output_type.py @@ -12,6 +12,7 @@ class Schema(BaseModel): ..., title="List of courses the person is taking" ) + # Convert the schema to a JSON string tool_schema = Schema( name="Tool Name", @@ -39,12 +40,12 @@ agent = Agent( verbose=True, interactive=True, # Set the output type to the tool schema which is a BaseModel - output_type=tool_schema, # or dict, or str + output_type=tool_schema, # or dict, or str metadata_output_type="json", # List of schemas that the agent can handle - list_tool_schemas = [tool_schema], - function_calling_format_type = "OpenAI", - function_calling_type = "json" # or soon yaml + list_tool_schemas=[tool_schema], + function_calling_format_type="OpenAI", + function_calling_type="json", # or soon yaml ) # Run the agent to generate the person's information diff --git a/pyproject.toml b/pyproject.toml index 467feb1b..c58b28e1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "swarms" -version = "4.8.6" +version = "4.8.7" description = "Swarms - Pytorch" license = "MIT" authors = ["Kye Gomez "] diff --git a/swarms/models/popular_llms.py b/swarms/models/popular_llms.py index 02b20234..cf7b991e 100644 --- a/swarms/models/popular_llms.py +++ b/swarms/models/popular_llms.py @@ -7,10 +7,11 @@ from langchain_community.chat_models.openai import ( from langchain.llms.anthropic import Anthropic from langchain.llms.cohere import Cohere from langchain.llms.mosaicml import MosaicML -from langchain.llms.openai import OpenAI #, OpenAIChat, AzureOpenAI +from langchain.llms.openai import OpenAI # , OpenAIChat, AzureOpenAI from langchain_community.llms.octoai_endpoint import OctoAIEndpoint from langchain.llms.replicate import Replicate + class AnthropicChat(Anthropic): def __call__(self, *args, **kwargs): return self.invoke(*args, **kwargs) @@ -44,7 +45,7 @@ class AzureOpenAILLM(AzureChatOpenAI): class OpenAIChatLLM(OpenAIChat): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) - + def __call__(self, *args, **kwargs): return self.invoke(*args, **kwargs) diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index a758db6a..304fa7ad 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -323,10 +323,7 @@ class Agent: # If the stopping function is provided then set the stopping condition to the stopping function self.short_memory = Conversation( - system_prompt=system_prompt, - time_enabled=True, - *args, - **kwargs + system_prompt=system_prompt, time_enabled=True, *args, **kwargs ) # If the docs exist then ingest the docs @@ -392,7 +389,7 @@ class Agent: if self.tool_schema is not None: logger.info("Tool schema provided") tool_schema_str = self.tool_schema_to_str(self.tool_schema) - + print(tool_schema_str) # Add to the short memory @@ -467,6 +464,48 @@ class Agent: except Exception as error: print(colored(f"Error adding task to memory: {error}", "red")) + # ############## TOKENIZER FUNCTIONS ############## + def count_tokens(self, text: str) -> int: + """Count the number of tokens in the text.""" + return self.tokenizer.len(text) + + def tokens_per_second(self, text: str) -> float: + """ + Calculates the number of tokens processed per second. + + Args: + text (str): The input text to count tokens from. + + Returns: + float: The number of tokens processed per second. + """ + import time + + start_time = time.time() + tokens = self.count_tokens(text) + end_time = time.time() + elapsed_time = end_time - start_time + return tokens / elapsed_time + + def time_to_generate(self, text: str) -> float: + """ + Calculates the time taken to generate the output. + + Args: + text (str): The input text to generate output from. + + Returns: + float: The time taken to generate the output. + """ + import time + + start_time = time.time() + self.llm(text) + end_time = time.time() + return end_time - start_time + + # ############## TOKENIZER FUNCTIONS ############## + def add_message_to_memory(self, message: str): """Add the message to the memory""" try: diff --git a/swarms/structs/base_structure.py b/swarms/structs/base_structure.py index 7f67c4c6..9e5833bf 100644 --- a/swarms/structs/base_structure.py +++ b/swarms/structs/base_structure.py @@ -80,7 +80,6 @@ class BaseStructure: self.save_artifact_path = save_artifact_path self.save_metadata_path = save_metadata_path self.save_error_path = save_error_path - def run(self, *args, **kwargs): """Run the structure.""" diff --git a/swarms/structs/schemas.py b/swarms/structs/schemas.py index cc3068b7..eee8db07 100644 --- a/swarms/structs/schemas.py +++ b/swarms/structs/schemas.py @@ -164,3 +164,91 @@ class ManySteps(BaseModel): [], description="A list of task steps.", ) + + +class GenerationOutputMetadata(BaseModel): + num_of_tokens: int = Field( + ..., + description="The number of tokens generated.", + examples=[7894], + ) + estimated_cost: str = Field( + ..., + description="The estimated cost of the generation.", + examples=["0,24$"], + ) + time_to_generate: str = Field( + ..., + description="The time taken to generate the output.", + examples=["1.2s"], + ) + tokens_per_second: int = Field( + ..., + description="The number of tokens generated per second.", + examples=[657], + ) + model_name: str = Field( + ..., + description="The model used to generate the output.", + examples=["gpt-3.5-turbo"], + ) + max_tokens: int = Field( + ..., + description="The maximum number of tokens allowed to generate.", + examples=[2048], + ) + temperature: float = Field( + ..., + description="The temperature used for generation.", + examples=[0.7], + ) + top_p: float = Field( + ..., + description="The top p value used for generation.", + examples=[0.9], + ) + frequency_penalty: float = Field( + ..., + description="The frequency penalty used for generation.", + examples=[0.0], + ) + presence_penalty: float = Field( + ..., + description="The presence penalty used for generation.", + examples=[0.0], + ) + stop_sequence: str | None = Field( + None, + description="The sequence used to stop the generation.", + examples=[""], + ) + model_type: str = Field( + ..., + description="The type of model used for generation.", + examples=["text"], + ) + model_version: str = Field( + ..., + description="The version of the model used for generation.", + examples=["1.0.0"], + ) + model_description: str = Field( + ..., + description="The description of the model used for generation.", + examples=["A model that generates text."], + ) + model_author: str = Field( + ..., + description="The author of the model used for generation.", + examples=["John Doe"], + ) + n: int = Field( + ..., + description="The number of outputs generated.", + examples=[1], + ) + n_best: int = Field( + ..., + description="The number of best outputs generated.", + examples=[1], + ) diff --git a/swarms/tools/pydantic_to_json.py b/swarms/tools/pydantic_to_json.py index 96fcf789..f9f92825 100644 --- a/swarms/tools/pydantic_to_json.py +++ b/swarms/tools/pydantic_to_json.py @@ -1,4 +1,4 @@ -from typing import Any, Optional, List +from typing import Any, List from docstring_parser import parse from pydantic import BaseModel @@ -72,7 +72,7 @@ def pydantic_to_functions( def multi_pydantic_to_functions( - pydantic_types: List[BaseModel] = None + pydantic_types: List[BaseModel] = None, ) -> dict[str, Any]: """ Converts multiple Pydantic types to a dictionary of functions.