pull/1251/merge
Steve-Dusty 1 week ago committed by GitHub
commit cb8532d669
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -237,7 +237,7 @@ This feature is perfect for rapid prototyping, complex task decomposition, and c
| **[MixtureOfAgents (MoA)](https://docs.swarms.world/en/latest/swarms/structs/moa/)** | Utilizes multiple expert agents in parallel and synthesizes their outputs. | Complex problem-solving and achieving state-of-the-art performance through collaboration. |
| **[GroupChat](https://docs.swarms.world/en/latest/swarms/structs/group_chat/)** | Agents collaborate and make decisions through a conversational interface. | Real-time collaborative decision-making, negotiations, and brainstorming. |
| **[ForestSwarm](https://docs.swarms.world/en/latest/swarms/structs/forest_swarm/)** | Dynamically selects the most suitable agent or tree of agents for a given task. | Task routing, optimizing for expertise, and complex decision-making trees. |
| **[HierarchicalSwarm](https://docs.swarms.world/en/latest/swarms/structs/hiearchical_swarm/)** | Orchestrates agents with a director who creates plans and distributes tasks to specialized worker agents. | Complex project management, team coordination, and hierarchical decision-making with feedback loops. |
| **[HierarchicalSwarm](https://docs.swarms.world/en/latest/swarms/structs/hierarchical_swarm/)** | Orchestrates agents with a director who creates plans and distributes tasks to specialized worker agents. | Complex project management, team coordination, and hierarchical decision-making with feedback loops. |
| **[HeavySwarm](https://docs.swarms.world/en/latest/swarms/structs/heavy_swarm/)** | Implements a five-phase workflow with specialized agents (Research, Analysis, Alternatives, Verification) for comprehensive task analysis. | Complex research and analysis tasks, financial analysis, strategic planning, and comprehensive reporting. |
| **[SwarmRouter](https://docs.swarms.world/en/latest/swarms/structs/swarm_router/)** | A universal orchestrator that provides a single interface to run any type of swarm with dynamic selection. | Simplifying complex workflows, switching between swarm strategies, and unified multi-agent management. |

@ -149,9 +149,9 @@ This index organizes **100+ production-ready examples** from our [Swarms Example
### Hierarchical and Sequential Workflows
| Category | Example | Description |
|----------|---------|-------------|
| Hierarchical | [Hierarchical Swarm Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hiearchical_swarm/hiearchical_examples/hierarchical_swarm_example.py) | Multi-level hierarchical agent organization |
| Hierarchical Basic | [Hierarchical Swarm Basic](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hiearchical_swarm/hiearchical_swarm-example.py) | Simplified hierarchical swarm implementation |
| Hierarchical Advanced | [Hierarchical Advanced](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hiearchical_swarm/hierarchical_swarm_example.py) | Advanced hierarchical swarm with complex agent relationships |
| Hierarchical | [Hierarchical Swarm Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hierarchical_swarm/hierarchical_examples/hierarchical_swarm_example.py) | Multi-level hierarchical agent organization |
| Hierarchical Basic | [Hierarchical Swarm Basic](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hierarchical_swarm/hierarchical_swarm-example.py) | Simplified hierarchical swarm implementation |
| Hierarchical Advanced | [Hierarchical Advanced](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hierarchical_swarm/hierarchical_swarm_example.py) | Advanced hierarchical swarm with complex agent relationships |
| Sequential Workflow | [Sequential Workflow Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/sequential_workflow/sequential_workflow_example.py) | Linear workflow with agents processing tasks in sequence |
| Sequential Swarm | [Sequential Swarm Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/sequential_workflow/sequential_swarm_example.py) | Sequential swarm with coordinated task execution |

@ -22,7 +22,7 @@ OPENAI_API_KEY=""
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# =============================================================================
# HEAD OF CONTENT AGENT

@ -2493,9 +2493,9 @@ This index organizes **100+ production-ready examples** from our [Swarms Example
### Hierarchical and Sequential Workflows
| Category | Example | Description |
|----------|---------|-------------|
| Hierarchical | [Hierarchical Swarm Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hiearchical_swarm/hiearchical_examples/hierarchical_swarm_example.py) | Multi-level hierarchical agent organization |
| Hierarchical Basic | [Hierarchical Swarm Basic](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hiearchical_swarm/hiearchical_swarm-example.py) | Simplified hierarchical swarm implementation |
| Hierarchical Advanced | [Hierarchical Advanced](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hiearchical_swarm/hierarchical_swarm_example.py) | Advanced hierarchical swarm with complex agent relationships |
| Hierarchical | [Hierarchical Swarm Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hierarchical_swarm/hierarchical_examples/hierarchical_swarm_example.py) | Multi-level hierarchical agent organization |
| Hierarchical Basic | [Hierarchical Swarm Basic](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hierarchical_swarm/hierarchical_swarm-example.py) | Simplified hierarchical swarm implementation |
| Hierarchical Advanced | [Hierarchical Advanced](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/hierarchical_swarm/hierarchical_swarm_example.py) | Advanced hierarchical swarm with complex agent relationships |
| Sequential Workflow | [Sequential Workflow Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/sequential_workflow/sequential_workflow_example.py) | Linear workflow with agents processing tasks in sequence |
| Sequential Swarm | [Sequential Swarm Example](https://github.com/kyegomez/swarms/blob/master/examples/multi_agent/sequential_workflow/sequential_swarm_example.py) | Sequential swarm with coordinated task execution |
@ -21048,9 +21048,9 @@ dispute_swarm = SwarmRouter(
)
hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hiearchical-swarm",
description="A hybrid hiearchical swarm that uses a hybrid hiearchical peer model to solve complex tasks.",
hybrid_hierarchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hierarchical-swarm",
description="A hybrid hierarchical swarm that uses a hybrid hierarchical peer model to solve complex tasks.",
swarms=[
litigation_swarm,
corporate_swarm,
@ -21065,7 +21065,7 @@ hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
if __name__ == "__main__":
hybrid_hiearchical_swarm.run(
hybrid_hierarchical_swarm.run(
"What is the best way to file for a patent? for ai technology "
)
@ -21083,7 +21083,7 @@ This page provides simple, practical examples of how to use the `HierarchicalSwa
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized financial analysis agents
market_research_agent = Agent(
@ -21131,7 +21131,7 @@ print(result)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized development agents
frontend_developer_agent = Agent(
@ -21179,7 +21179,7 @@ print(result)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create analysis agents
market_agent = Agent(
@ -21213,7 +21213,7 @@ print("Director Feedback:", feedback)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create analysis agents
market_agent = Agent(
@ -21253,7 +21253,7 @@ for i, result in enumerate(results):
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized research agents
research_manager = Agent(
@ -38165,7 +38165,7 @@ cron_job.run("Perform analysis")
### Cron Jobs With Multi-Agent Structures
You can also run Cron Jobs with multi-agent structures like `SequentialWorkflow`, `ConcurrentWorkflow`, `HiearchicalSwarm`, and other methods.
You can also run Cron Jobs with multi-agent structures like `SequentialWorkflow`, `ConcurrentWorkflow`, `HierarchicalSwarm`, and other methods.
- Just initialize the class as the agent parameter in the `CronJob(agent=swarm)`
@ -41343,7 +41343,7 @@ flowchart TD
```python
from swarms import Agent, SwarmRouter
from swarms.structs.hybrid_hiearchical_peer_swarm import (
from swarms.structs.hybrid_hierarchical_peer_swarm import (
HybridHierarchicalClusterSwarm,
)
@ -41441,9 +41441,9 @@ dispute_swarm = SwarmRouter(
)
hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hiearchical-swarm",
description="A hybrid hiearchical swarm that uses a hybrid hiearchical peer model to solve complex tasks.",
hybrid_hierarchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hierarchical-swarm",
description="A hybrid hierarchical swarm that uses a hybrid hierarchical peer model to solve complex tasks.",
swarms=[
litigation_swarm,
corporate_swarm,
@ -41458,7 +41458,7 @@ hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
if __name__ == "__main__":
hybrid_hiearchical_swarm.run(
hybrid_hierarchical_swarm.run(
"What is the best way to file for a patent? for ai technology "
)
@ -41736,7 +41736,7 @@ Executes the hierarchical swarm for a specified number of feedback loops, proces
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized agents
research_agent = Agent(
@ -41789,7 +41789,7 @@ Runs a single step of the hierarchical swarm, executing one complete cycle of pl
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create development agents
frontend_agent = Agent(
@ -41842,7 +41842,7 @@ Executes the hierarchical swarm for a list of tasks, processing each task throug
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create analysis agents
market_agent = Agent(
@ -41884,7 +41884,7 @@ for i, result in enumerate(results):
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized financial agents
market_research_agent = Agent(
@ -41932,7 +41932,7 @@ print(result)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized development agents
frontend_developer_agent = Agent(
@ -42340,7 +42340,7 @@ Hierarchical architectures enable structured, iterative, and scalable problem-so
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized agents
research_agent = Agent(
@ -45395,7 +45395,7 @@ print(out)
# Multi-Agent Orchestration:
Swarms was designed to faciliate the communication between many different and specialized agents from a vast array of other frameworks such as langchain, autogen, crew, and more.
In traditional swarm theory, there are many types of swarms usually for very specialized use-cases and problem sets. Such as Hiearchical and sequential are great for accounting and sales, because there is usually a boss coordinator agent that distributes a workload to other specialized agents.
In traditional swarm theory, there are many types of swarms usually for very specialized use-cases and problem sets. Such as Hierarchical and sequential are great for accounting and sales, because there is usually a boss coordinator agent that distributes a workload to other specialized agents.
| **Name** | **Description** | **Code Link** | **Use Cases** |
@ -48809,7 +48809,7 @@ The `SwarmRouter` supports many various multi-agent architectures for various ap
| `GroupChat` | Facilitates communication among agents in a group chat format |
| `MultiAgentRouter` | Routes tasks between multiple agents |
| `AutoSwarmBuilder` | Automatically builds swarm structure |
| `HiearchicalSwarm` | Hierarchical organization of agents |
| `HierarchicalSwarm` | Hierarchical organization of agents |
| `MajorityVoting` | Uses majority voting for decision making |
| `MALT` | Multi-Agent Language Tasks |
| `CouncilAsAJudge` | Council-based judgment system |
@ -49062,7 +49062,7 @@ hierarchical_router = SwarmRouter(
description="Hierarchical organization of agents with a director",
max_loops=3,
agents=[director, analyst1, analyst2, researcher],
swarm_type="HiearchicalSwarm",
swarm_type="HierarchicalSwarm",
return_all_history=True
)
@ -55782,7 +55782,7 @@ This comprehensive guide outlines production-grade best practices for using the
| `GroupChat` | Collaborative solving | - Brainstorming<br>- Decision making<br>- Problem solving<br>- Strategy development |
| `MultiAgentRouter` | Task distribution | - Load balancing<br>- Specialized processing<br>- Resource optimization<br>- Service routing |
| `AutoSwarmBuilder` | Automated setup | - Quick prototyping<br>- Simple tasks<br>- Testing<br>- MVP development |
| `HiearchicalSwarm` | Complex organization | - Project management<br>- Research analysis<br>- Enterprise workflows<br>- Team automation |
| `HierarchicalSwarm` | Complex organization | - Project management<br>- Research analysis<br>- Enterprise workflows<br>- Team automation |
| `MajorityVoting` | Consensus needs | - Quality assurance<br>- Decision validation<br>- Risk assessment<br>- Content moderation |
=== "Application Patterns"
@ -55791,7 +55791,7 @@ This comprehensive guide outlines production-grade best practices for using the
| Application | Recommended Swarm | Benefits |
|------------|-------------------|-----------|
| **Team Automation** | `HiearchicalSwarm` | - Automated team coordination<br>- Clear responsibility chain<br>- Scalable team structure |
| **Team Automation** | `HierarchicalSwarm` | - Automated team coordination<br>- Clear responsibility chain<br>- Scalable team structure |
| **Research Pipeline** | `SequentialWorkflow` | - Structured research process<br>- Quality control at each stage<br>- Comprehensive output |
| **Trading System** | `ConcurrentWorkflow` | - Multi-market coverage<br>- Real-time analysis<br>- Risk distribution |
| **Content Factory** | `MixtureOfAgents` | - Automated content creation<br>- Consistent quality<br>- High throughput |
@ -55852,7 +55852,7 @@ Use this framework to select the optimal swarm architecture for your use case:
1. **Task Complexity Analysis**
- Simple tasks → `AutoSwarmBuilder`
- Complex tasks → `HiearchicalSwarm` or `MultiAgentRouter`
- Complex tasks → `HierarchicalSwarm` or `MultiAgentRouter`
- Dynamic tasks → `AgentRearrange`
2. **Workflow Pattern**
@ -55870,7 +55870,7 @@ Use this framework to select the optimal swarm architecture for your use case:
=== "Finance"
!!! example "Financial Applications"
- Risk Analysis: `HiearchicalSwarm`
- Risk Analysis: `HierarchicalSwarm`
- Market Research: `MixtureOfAgents`
- Trading Strategies: `ConcurrentWorkflow`
- Portfolio Management: `SpreadSheetSwarm`
@ -55888,7 +55888,7 @@ Use this framework to select the optimal swarm architecture for your use case:
!!! example "Legal Applications"
- Document Review: `SequentialWorkflow`
- Case Analysis: `MixtureOfAgents`
- Compliance Check: `HiearchicalSwarm`
- Compliance Check: `HierarchicalSwarm`
- Contract Analysis: `ConcurrentWorkflow`
## Production Best Practices
@ -57095,15 +57095,15 @@ Key features:
# File: swarms_cloud/hierarchical_swarm.md
# HiearchicalSwarm
# HierarchicalSwarm
*Implements structured, multi-level task management with clear authority*
**Swarm Type**: `HiearchicalSwarm`
**Swarm Type**: `HierarchicalSwarm`
## Overview
The HiearchicalSwarm implements a structured, multi-level approach to task management with clear lines of authority and delegation. This architecture organizes agents in a hierarchical structure where manager agents coordinate and oversee worker agents, enabling efficient task distribution and quality control.
The HierarchicalSwarm implements a structured, multi-level approach to task management with clear lines of authority and delegation. This architecture organizes agents in a hierarchical structure where manager agents coordinate and oversee worker agents, enabling efficient task distribution and quality control.
Key features:
- **Structured Hierarchy**: Clear organizational structure with managers and workers
@ -57120,7 +57120,7 @@ Key features:
## API Usage
### Basic HiearchicalSwarm Example
### Basic HierarchicalSwarm Example
=== "Shell (curl)"
```bash
@ -57130,7 +57130,7 @@ Key features:
-d '{
"name": "Market Research ",
"description": "Parallel market research across different sectors",
"swarm_type": "HiearchicalSwarm",
"swarm_type": "HierarchicalSwarm",
"task": "Research and analyze market opportunities in AI, healthcare, fintech, and e-commerce sectors",
"agents": [
{
@ -57186,7 +57186,7 @@ Key features:
swarm_config = {
"name": "Market Research ",
"description": "Parallel market research across different sectors",
"swarm_type": "HiearchicalSwarm",
"swarm_type": "HierarchicalSwarm",
"task": "Research and analyze market opportunities in AI, healthcare, fintech, and e-commerce sectors",
"agents": [
{
@ -57233,7 +57233,7 @@ Key features:
if response.status_code == 200:
result = response.json()
print("HiearchicalSwarm completed successfully!")
print("HierarchicalSwarm completed successfully!")
print(f"Cost: ${result['metadata']['billing_info']['total_cost']}")
print(f"Execution time: {result['metadata']['execution_time_seconds']} seconds")
print(f"Project plan: {result['output']}")
@ -57248,7 +57248,7 @@ Key features:
"status": "success",
"swarm_name": "Market Research Auto",
"description": "Parallel market research across different sectors",
"swarm_type": "HiearchicalSwarm",
"swarm_type": "HierarchicalSwarm",
"output": [
{
"role": "System",
@ -62320,7 +62320,7 @@ Available swarm types for different execution patterns.
| `GroupChat` | Agents interact in a group chat format |
| `MultiAgentRouter` | Routes tasks between multiple agents |
| `AutoSwarmBuilder` | Automatically builds swarm structure |
| `HiearchicalSwarm` | Hierarchical organization of agents |
| `HierarchicalSwarm` | Hierarchical organization of agents |
| `Auto` | Automatically selects the best swarm type |
| `MajorityVoting` | Agents vote on decisions |
| `Malt` | Multi-Agent Language Tasks |
@ -63282,7 +63282,7 @@ The `swarm_type` parameter defines the architecture and collaboration pattern of
| `GroupChat` | Agents collaborate in a discussion format to solve problems |
| `MultiAgentRouter` | Routes subtasks to specialized agents based on their capabilities |
| `AutoSwarmBuilder` | Automatically designs and builds an optimal swarm based on the task |
| `HiearchicalSwarm` | Organizes agents in a hierarchical structure with managers and workers |
| `HierarchicalSwarm` | Organizes agents in a hierarchical structure with managers and workers |
| `MajorityVoting` | Uses a consensus mechanism where multiple agents vote on the best solution |
| `auto` | Automatically selects the most appropriate swarm type for the given task |

@ -285,7 +285,7 @@ nav:
- Heavy Swarm: "swarms/structs/heavy_swarm.md"
- Social Algorithms: "swarms/structs/social_algorithms.md"
- Hiearchical Architectures:
- Hierarchical Architectures:
- Overview: "swarms/structs/multi_swarm_orchestration.md"
- HierarchicalSwarm: "swarms/structs/hierarchical_swarm.md"
- Hierarchical Structured Communication Framework: "swarms/structs/hierarchical_structured_communication_framework.md"
@ -431,7 +431,7 @@ nav:
- Applications:
- Overview: "examples/applications_overview.md"
- Swarms of Browser Agents: "swarms/examples/swarms_of_browser_agents.md"
- Hiearchical Marketing Team: "examples/marketing_team.md"
- Hierarchical Marketing Team: "examples/marketing_team.md"
- Gold ETF Research with HeavySwarm: "examples/gold_etf_research.md"
- Hiring Swarm: "examples/hiring_swarm.md"
- Advanced Research: "examples/av.md"

@ -104,9 +104,9 @@ dispute_swarm = SwarmRouter(
)
hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hiearchical-swarm",
description="A hybrid hiearchical swarm that uses a hybrid hiearchical peer model to solve complex tasks.",
hybrid_hierarchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hierarchical-swarm",
description="A hybrid hierarchical swarm that uses a hybrid hierarchical peer model to solve complex tasks.",
swarms=[
litigation_swarm,
corporate_swarm,
@ -121,7 +121,7 @@ hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
if __name__ == "__main__":
hybrid_hiearchical_swarm.run(
hybrid_hierarchical_swarm.run(
"What is the best way to file for a patent? for ai technology "
)

@ -6,7 +6,7 @@ This page provides simple, practical examples of how to use the `HierarchicalSwa
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized financial analysis agents
market_research_agent = Agent(
@ -54,7 +54,7 @@ print(result)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized development agents
frontend_developer_agent = Agent(
@ -102,7 +102,7 @@ print(result)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create analysis agents
market_agent = Agent(
@ -136,7 +136,7 @@ print("Director Feedback:", feedback)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create analysis agents
market_agent = Agent(
@ -176,7 +176,7 @@ for i, result in enumerate(results):
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized research agents
research_manager = Agent(
@ -221,7 +221,7 @@ You can visualize the hierarchical structure of your swarm before executing task
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized agents
research_agent = Agent(

@ -158,7 +158,7 @@ router = SwarmRouter(
| `"GroupChat"` | Enable group chat between agents |
| `"MultiAgentRouter"` | Route tasks to appropriate agents |
| `"AutoSwarmBuilder"` | Automatically build swarm configuration |
| `"HiearchicalSwarm"` | Hierarchical agent organization |
| `"HierarchicalSwarm"` | Hierarchical agent organization |
| `"MajorityVoting"` | Use majority voting for decisions |
| `"MALT"` | Multi-Agent Learning and Training |
| `"CouncilAsAJudge"` | Council-based evaluation system |

@ -276,7 +276,7 @@ The AutoSwarmBuilder supports various multi-agent architecture patterns:
| **GroupChat** | Collaborative discussion and consensus-building |
| **MultiAgentRouter** | Intelligent routing and load balancing |
| **AutoSwarmBuilder** | Self-organizing and self-optimizing teams |
| **HiearchicalSwarm** | Layered decision-making with management tiers |
| **HierarchicalSwarm** | Layered decision-making with management tiers |
| **MajorityVoting** | Democratic decision-making with voting |
| **MALT** | Multi-agent learning and training |
| **CouncilAsAJudge** | Deliberative decision-making with expert panels |

@ -101,7 +101,7 @@ flowchart TD
```python
from swarms import Agent, SwarmRouter
from swarms.structs.hybrid_hiearchical_peer_swarm import (
from swarms.structs.hybrid_hierarchical_peer_swarm import (
HybridHierarchicalClusterSwarm,
)
@ -199,9 +199,9 @@ dispute_swarm = SwarmRouter(
)
hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hiearchical-swarm",
description="A hybrid hiearchical swarm that uses a hybrid hiearchical peer model to solve complex tasks.",
hybrid_hierarchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hierarchical-swarm",
description="A hybrid hierarchical swarm that uses a hybrid hierarchical peer model to solve complex tasks.",
swarms=[
litigation_swarm,
corporate_swarm,
@ -216,7 +216,7 @@ hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
if __name__ == "__main__":
hybrid_hiearchical_swarm.run(
hybrid_hierarchical_swarm.run(
"What is the best way to file for a patent? for ai technology "
)

@ -85,7 +85,7 @@ Displays a visual tree representation of the hierarchical swarm structure, showi
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized agents
research_agent = Agent(
@ -160,7 +160,7 @@ Executes the hierarchical swarm for a specified number of feedback loops, proces
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized agents
research_agent = Agent(
@ -194,7 +194,7 @@ print(result)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
def streaming_callback(agent_name: str, chunk: str, is_final: bool):
"""Callback function for real-time streaming of agent outputs."""
@ -270,7 +270,7 @@ Execute the hierarchical swarm for multiple tasks in sequence. Processes a list
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create analysis agents
market_agent = Agent(
@ -312,7 +312,7 @@ for i, result in enumerate(results):
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized financial agents
market_research_agent = Agent(
@ -360,7 +360,7 @@ print(result)
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized development agents
frontend_developer_agent = Agent(

@ -45,7 +45,7 @@ Hierarchical architectures enable structured, iterative, and scalable problem-so
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Create specialized agents
research_agent = Agent(

@ -117,7 +117,7 @@ The `SwarmRouter` supports many various multi-agent architectures for various ap
| `GroupChat` | Facilitates communication among agents in a group chat format |
| `MultiAgentRouter` | Routes tasks between multiple agents |
| `AutoSwarmBuilder` | Automatically builds swarm structure |
| `HiearchicalSwarm` | Hierarchical organization of agents |
| `HierarchicalSwarm` | Hierarchical organization of agents |
| `MajorityVoting` | Uses majority voting for decision making |
| `MALT` | Multi-Agent Language Tasks |
| `CouncilAsAJudge` | Council-based judgment system |
@ -360,7 +360,7 @@ hierarchical_router = SwarmRouter(
description="Hierarchical organization of agents with a director",
max_loops=3,
agents=[director, analyst1, analyst2, researcher],
swarm_type="HiearchicalSwarm",
swarm_type="HierarchicalSwarm",
return_all_history=True
)

@ -85,7 +85,7 @@ This directory contains comprehensive examples demonstrating various capabilitie
- **[guides/](guides/)** - Comprehensive guides and tutorials including demos, generation length blog, geo guesser agent, graph workflow guide, hackathon examples, hierarchical marketing team, nano banana Jarvis agent, smart database, web scraper agents, workshops, x402 examples, and workshop examples (840_update, 850_workshop).
- [README.md](guides/README.md) - Guides documentation
- [hiearchical_marketing_team.py](guides/hiearchical_marketing_team.py) - Hierarchical marketing team example
- [hierarchical_marketing_team.py](guides/hierarchical_marketing_team.py) - Hierarchical marketing team example
- [demos/](guides/demos/) - Various demonstration examples
- [hackathons/](guides/hackathons/) - Hackathon project examples
- [workshops/](guides/workshops/) - Workshop examples
@ -140,7 +140,7 @@ This directory contains comprehensive examples demonstrating various capabilitie
### Multi-Agent Patterns
- [Duo Agent](multi_agent/duo_agent.py) - Two-agent collaboration
- [Hierarchical Swarm](multi_agent/hiearchical_swarm/hierarchical_swarm_example.py) - Hierarchical agent structures
- [Hierarchical Swarm](multi_agent/hierarchical_swarm/hierarchical_swarm_example.py) - Hierarchical agent structures
- [Group Chat](multi_agent/groupchat/interactive_groupchat_example.py) - Multi-agent conversations
- [Graph Workflow](multi_agent/graphworkflow_examples/graph_workflow_example.py) - Graph-based workflows
- [Social Algorithms](multi_agent/social_algorithms_examples/) - Various social algorithm patterns

@ -20,7 +20,7 @@ This directory contains comprehensive guides and tutorials for using Swarms effe
- [setup_and_test.py](graphworkflow_guide/setup_and_test.py) - Setup and testing utilities
## Hierarchical Marketing Team
- [hiearchical_marketing_team.py](hiearchical_marketing_team.py) - Marketing team hierarchy example
- [hierarchical_marketing_team.py](hierarchical_marketing_team.py) - Marketing team hierarchy example
## Nano Banana Jarvis Agent
- [img_gen_nano_banana.py](nano_banana_jarvis_agent/img_gen_nano_banana.py) - Image generation with Nano Banana

@ -87,19 +87,19 @@ This directory contains comprehensive examples demonstrating various multi-agent
- [medical_heavy_swarm_example.py](heavy_swarm_examples/medical_heavy_swarm_example.py) - Medical heavy swarm
## Hierarchical Swarm
- [hierarchical_swarm_basic_demo.py](hiearchical_swarm/hierarchical_swarm_basic_demo.py) - Basic hierarchical demo
- [hierarchical_swarm_batch_demo.py](hiearchical_swarm/hierarchical_swarm_batch_demo.py) - Batch processing demo
- [hierarchical_swarm_comparison_demo.py](hiearchical_swarm/hierarchical_swarm_comparison_demo.py) - Comparison demo
- [hierarchical_swarm_example.py](hiearchical_swarm/hierarchical_swarm_example.py) - Main hierarchical example
- [hierarchical_swarm_streaming_demo.py](hiearchical_swarm/hierarchical_swarm_streaming_demo.py) - Streaming demo
- [hierarchical_swarm_streaming_example.py](hiearchical_swarm/hierarchical_swarm_streaming_example.py) - Streaming example
- [hs_interactive.py](hiearchical_swarm/hs_interactive.py) - Interactive hierarchical swarm
- [hs_stock_team.py](hiearchical_swarm/hs_stock_team.py) - Stock trading team
- [hybrid_hiearchical_swarm.py](hiearchical_swarm/hybrid_hiearchical_swarm.py) - Hybrid approach
- [sector_analysis_hiearchical_swarm.py](hiearchical_swarm/sector_analysis_hiearchical_swarm.py) - Sector analysis
- [hiearchical_examples/](hiearchical_swarm/hiearchical_examples/) - Additional hierarchical examples
- [hiearchical_swarm_ui/](hiearchical_swarm/hiearchical_swarm_ui/) - UI components
- [hscf/](hiearchical_swarm/hscf/) - Hierarchical framework examples
- [hierarchical_swarm_basic_demo.py](hierarchical_swarm/hierarchical_swarm_basic_demo.py) - Basic hierarchical demo
- [hierarchical_swarm_batch_demo.py](hierarchical_swarm/hierarchical_swarm_batch_demo.py) - Batch processing demo
- [hierarchical_swarm_comparison_demo.py](hierarchical_swarm/hierarchical_swarm_comparison_demo.py) - Comparison demo
- [hierarchical_swarm_example.py](hierarchical_swarm/hierarchical_swarm_example.py) - Main hierarchical example
- [hierarchical_swarm_streaming_demo.py](hierarchical_swarm/hierarchical_swarm_streaming_demo.py) - Streaming demo
- [hierarchical_swarm_streaming_example.py](hierarchical_swarm/hierarchical_swarm_streaming_example.py) - Streaming example
- [hs_interactive.py](hierarchical_swarm/hs_interactive.py) - Interactive hierarchical swarm
- [hs_stock_team.py](hierarchical_swarm/hs_stock_team.py) - Stock trading team
- [hybrid_hierarchical_swarm.py](hierarchical_swarm/hybrid_hierarchical_swarm.py) - Hybrid approach
- [sector_analysis_hierarchical_swarm.py](hierarchical_swarm/sector_analysis_hierarchical_swarm.py) - Sector analysis
- [hierarchical_examples/](hierarchical_swarm/hierarchical_examples/) - Additional hierarchical examples
- [hierarchical_swarm_ui/](hierarchical_swarm/hierarchical_swarm_ui/) - UI components
- [hscf/](hierarchical_swarm/hscf/) - Hierarchical framework examples
## Interactive Group Chat
- [interactive_groupchat_speaker_example.py](interactive_groupchat_examples/interactive_groupchat_speaker_example.py) - Speaker management

@ -12,14 +12,14 @@ This directory contains examples demonstrating hierarchical swarm patterns for m
- [hierarchical_swarm_streaming_example.py](hierarchical_swarm_streaming_example.py) - Streaming example
- [hs_interactive.py](hs_interactive.py) - Interactive hierarchical swarm
- [hs_stock_team.py](hs_stock_team.py) - Stock trading team
- [hybrid_hiearchical_swarm.py](hybrid_hiearchical_swarm.py) - Hybrid approach
- [sector_analysis_hiearchical_swarm.py](sector_analysis_hiearchical_swarm.py) - Sector analysis
- [hybrid_hierarchical_swarm.py](hybrid_hierarchical_swarm.py) - Hybrid approach
- [sector_analysis_hierarchical_swarm.py](sector_analysis_hierarchical_swarm.py) - Sector analysis
- [display_hierarchy_example.py](display_hierarchy_example.py) - Visualize swarm hierarchy structure
## Subdirectories
- [hiearchical_examples/](hiearchical_examples/) - Additional hierarchical examples
- [hiearchical_swarm_ui/](hiearchical_swarm_ui/) - UI components for hierarchical swarms
- [hierarchical_examples/](hierarchical_examples/) - Additional hierarchical examples
- [hierarchical_swarm_ui/](hierarchical_swarm_ui/) - UI components for hierarchical swarms
## Overview

@ -1,5 +1,5 @@
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Example 1: Medical Diagnosis Hierarchical Swarm

@ -1,5 +1,5 @@
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Initialize specialized financial analysis agents
market_research_agent = Agent(

@ -1,5 +1,5 @@
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
# Initialize specialized development department agents

@ -5,7 +5,7 @@ Basic Hierarchical Swarm Streaming Demo
Minimal example showing the core streaming callback functionality.
"""
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.agents import Agent

@ -8,7 +8,7 @@ to handle multiple tasks sequentially with real-time feedback.
import time
from typing import Callable
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.agents import Agent

@ -1,4 +1,4 @@
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.agents import Agent

@ -2,7 +2,7 @@ from dotenv import load_dotenv
# Swarm imports
from swarms.structs.agent import Agent
from swarms.structs.hiearchical_swarm import (
from swarms.structs.hierarchical_swarm import (
HierarchicalSwarm,
SwarmSpec,
)

@ -1,6 +1,6 @@
import time
from typing import Callable
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms import Agent

@ -15,7 +15,7 @@ The streaming callback allows you to:
import time
from swarms.structs.agent import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
def streaming_callback(agent_name: str, chunk: str, is_final: bool):

@ -2,7 +2,7 @@
Debug script for the Arasaka Dashboard to test agent output display.
"""
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.structs.agent import Agent

@ -2,7 +2,7 @@
Test script for the Arasaka Dashboard functionality.
"""
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.structs.agent import Agent

@ -2,7 +2,7 @@
Test script for full agent output display in the Arasaka Dashboard.
"""
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.structs.agent import Agent

@ -2,7 +2,7 @@
Test script for multi-loop agent tracking in the Arasaka Dashboard.
"""
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.structs.agent import Agent

@ -2,7 +2,7 @@ from dotenv import load_dotenv
# Swarm imports
from swarms.structs.agent import Agent
from swarms.structs.hiearchical_swarm import (
from swarms.structs.hierarchical_swarm import (
HierarchicalSwarm,
SwarmSpec,
)

@ -1,5 +1,5 @@
from swarms import Agent, SwarmRouter
from swarms.structs.hybrid_hiearchical_peer_swarm import (
from swarms.structs.hybrid_hierarchical_peer_swarm import (
HybridHierarchicalClusterSwarm,
)
@ -103,9 +103,9 @@ dispute_swarm = SwarmRouter(
)
hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hiearchical-swarm",
description="A hybrid hiearchical swarm that uses a hybrid hiearchical peer model to solve complex tasks.",
hybrid_hierarchical_swarm = HybridHierarchicalClusterSwarm(
name="hybrid-hierarchical-swarm",
description="A hybrid hierarchical swarm that uses a hybrid hierarchical peer model to solve complex tasks.",
swarms=[
litigation_swarm,
corporate_swarm,
@ -120,6 +120,6 @@ hybrid_hiearchical_swarm = HybridHierarchicalClusterSwarm(
if __name__ == "__main__":
hybrid_hiearchical_swarm.run(
hybrid_hierarchical_swarm.run(
"What are the most effective methods for filing a patent in the field of AI technology? Please provide a list of user-friendly platforms that facilitate the patent filing process, along with their website links."
)

@ -33,7 +33,7 @@ agents = [
]
# Create hierarchical swarm system
hiearchical_swarm = HierarchicalSwarm(
hierarchical_swarm = HierarchicalSwarm(
name="Sector-Investment-Advisory-System",
description="System for sector analysis and optimal allocations.",
agents=agents,
@ -43,7 +43,7 @@ hiearchical_swarm = HierarchicalSwarm(
)
result = hiearchical_swarm.run(
result = hierarchical_swarm.run(
task=(
"Simulate the allocation of a $50B fund specifically for the pharmaceutical sector. "
"Provide specific tickers (e.g., PFE, MRK, JNJ, LLY, BMY, etc.) and a clear rationale for why funds should be allocated to each company. "

@ -24,7 +24,7 @@ def create_medical_unit_swarm(client, patient_info):
return client.swarms.run(
name="Hospital Medical Unit",
description="A simulated hospital unit with a doctor (leader), nurses, and a medical assistant collaborating on patient care.",
swarm_type="HiearchicalSwarm",
swarm_type="HierarchicalSwarm",
task=patient_info,
agents=[
{

@ -1,4 +1,4 @@
HIEARCHICAL_SWARM_SYSTEM_PROMPT = """
HIERARCHICAL_SWARM_SYSTEM_PROMPT = """
**SYSTEM PROMPT: HIERARCHICAL AGENT DIRECTOR**

@ -10,7 +10,7 @@ SwarmType = Literal[
"GroupChat",
"MultiAgentRouter",
"AutoSwarmBuilder",
"HiearchicalSwarm",
"HierarchicalSwarm",
"auto",
"MajorityVoting",
"MALT",

@ -23,8 +23,8 @@ from swarms.structs.groupchat import (
expertise_based,
)
from swarms.structs.heavy_swarm import HeavySwarm
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hybrid_hiearchical_peer_swarm import (
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.structs.hybrid_hierarchical_peer_swarm import (
HybridHierarchicalClusterSwarm,
)
from swarms.structs.interactive_groupchat import (

@ -87,7 +87,7 @@ Choose the most appropriate architecture based on task requirements:
- **GroupChat**: Collaborative discussion and consensus-building approach
- **MultiAgentRouter**: Intelligent routing and load balancing across agents
- **AutoSwarmBuilder**: Self-organizing and self-optimizing agent teams
- **HiearchicalSwarm**: Layered decision-making with management and execution tiers
- **HierarchicalSwarm**: Layered decision-making with management and execution tiers
- **MajorityVoting**: Democratic decision-making with voting mechanisms
- **MALT**: Multi-agent learning and training with knowledge sharing
- **CouncilAsAJudge**: Deliberative decision-making with expert panels

@ -36,9 +36,9 @@ from rich.table import Table
from rich.text import Text
from rich.tree import Tree
from swarms.prompts.hiearchical_system_prompt import (
from swarms.prompts.hierarchical_system_prompt import (
DIRECTOR_PLANNING_PROMPT,
HIEARCHICAL_SWARM_SYSTEM_PROMPT,
HIERARCHICAL_SWARM_SYSTEM_PROMPT,
)
from swarms.prompts.multi_agent_collab_prompt import (
MULTI_AGENT_COLLAB_PROMPT_TWO,
@ -667,7 +667,7 @@ class HierarchicalSwarm:
add_collaboration_prompt: bool = True,
director_feedback_on: bool = True,
interactive: bool = False,
director_system_prompt: str = HIEARCHICAL_SWARM_SYSTEM_PROMPT,
director_system_prompt: str = HIERARCHICAL_SWARM_SYSTEM_PROMPT,
multi_agent_prompt_improvements: bool = False,
director_temperature: float = 0.7,
director_top_p: float = 0.9,
@ -1279,7 +1279,7 @@ class HierarchicalSwarm:
agent_description="Director module that provides feedback to the worker agents",
model_name=self.director_model_name,
max_loops=1,
system_prompt=HIEARCHICAL_SWARM_SYSTEM_PROMPT,
system_prompt=HIERARCHICAL_SWARM_SYSTEM_PROMPT,
)
output = feedback_director.run(

@ -26,7 +26,7 @@ from swarms.structs.council_as_judge import CouncilAsAJudge
from swarms.structs.debate_with_judge import DebateWithJudge
from swarms.structs.groupchat import GroupChat
from swarms.structs.heavy_swarm import HeavySwarm
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
from swarms.structs.interactive_groupchat import InteractiveGroupChat
from swarms.structs.ma_utils import list_all_agents
from swarms.structs.majority_voting import MajorityVoting

@ -1,5 +1,5 @@
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms.structs.hierarchical_swarm import HierarchicalSwarm
def test_hierarchical_swarm_basic_initialization():

@ -395,7 +395,7 @@ def test_spreadsheet_swarm():
def test_hierarchical_swarm():
"""Test HierarchicalSwarm structure"""
try:
from swarms.structs.hiearchical_swarm import SwarmSpec
from swarms.structs.hierarchical_swarm import SwarmSpec
from swarms.utils.litellm_wrapper import LiteLLM
# Create worker agents

Loading…
Cancel
Save