diff --git a/swarms/agents/agent.py b/swarms/agents/agent.py index 59326190..9cb54f5d 100644 --- a/swarms/agents/agent.py +++ b/swarms/agents/agent.py @@ -19,7 +19,17 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %( class AgentNodeInitializer: """Useful for when you need to spawn an autonomous agent instance as a agent to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on""" - def __init__(self, llm, tools, vectorstore): + def __init__(self, + llm, + tools, + vectorstore, + temperature, + model_type: str=None, + human_in_the_loop=True, + model_id: str = None, + embedding_size: int = 8192, + system_prompt: str = None, + max_iterations: int = None): if not llm or not tools or not vectorstore: logging.error("llm, tools, and vectorstore cannot be None.") raise ValueError("llm, tools, and vectorstore cannot be None.") @@ -27,9 +37,23 @@ class AgentNodeInitializer: self.llm = llm self.tools = tools self.vectorstore = vectorstore + self.agent = None + self.temperature = temperature + self.model_type = model_type + + self.human_in_the_loop = human_in_the_loop + self.prompt = prompt + self.model_id = model_id + + self.embedding_size = embedding_size + self.system_prompt system_prompt + + + + - def create_agent(self, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False): + def create_agent(self, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=True, search_kwargs={}, verbose=False): logging.info("Creating agent in AgentNode") try: self.agent = AutoGPT.from_llm_and_tools( @@ -78,16 +102,23 @@ class AgentNode: self.openai_api_key = openai_api_key - def initialize_llm(self, llm_class, temperature=0.5): - if not llm_class: - logging.error("llm_class cannot be none") - raise ValueError("llm_class cannot be None") - - try: - return llm_class(openai_api_key=self.openai_api_key, temperature=temperature) + def initialize_llm(self, llm_class): + """ + Init LLM + + Params: + llm_class(class): The Language model class. Default is OpenAI. + temperature (float): The Temperature for the language model. Default is 0.5 + """ + try: + # Initialize language model + if self.llm_class == 'openai' or OpenAI: + return llm_class(openai_api_key=self.openai_api_key, temperature=self.temperature) + elif self.model_type == "huggingface": + return HuggingFaceLLM(model_id=self.model_id, temperature=self.temperature) except Exception as e: logging.error(f"Failed to initialize language model: {e}") - raise + def initialize_tools(self, llm_class): if not llm_class: @@ -116,8 +147,7 @@ class AgentNode: def initialize_vectorstore(self): try: embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) - embedding_size = 1536 - index = faiss.IndexFlatL2(embedding_size) + index = faiss.IndexFlatL2(self.embedding_size) return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) except Exception as e: logging.error(f"Failed to initialize vector store: {e}") @@ -137,7 +167,11 @@ class AgentNode: logging.error(f"Failed to create agent node: {e}") raise -def agent(openai_api_key): +def agent(openai_api_key, ojective, model_type, model_id): + if not objective or not isinstance(objective, str): + logging.error("Invalid objective") + raise ValueError("A valid objective is required") + if not openai_api_key: logging.error("OpenAI API key is not provided") raise ValueError("OpenAI API key is required")