diff --git a/docs/swarms/RAG/qdrant_rag.md b/docs/swarms/RAG/qdrant_rag.md index d223ddfe..3bbc2933 100644 --- a/docs/swarms/RAG/qdrant_rag.md +++ b/docs/swarms/RAG/qdrant_rag.md @@ -19,31 +19,44 @@ pip install qdrant-client fastembed swarms-memory litellm ## Tutorial Steps -1. **Install Swarms**: First, install the latest version of Swarms: +### Step 1: Install Swarms - ```bash - pip3 install -U swarms - ``` +First, install the latest version of Swarms: -2. **Environment Setup**: Set up your environment variables in a `.env` file: +```bash +pip3 install -U swarms +``` - ```plaintext - OPENAI_API_KEY="your-api-key-here" - QDRANT_URL="https://your-cluster.qdrant.io" - QDRANT_API_KEY="your-api-key" - WORKSPACE_DIR="agent_workspace" - ``` +### Step 2: Environment Setup + +Set up your environment variables in a `.env` file: + +```plaintext +OPENAI_API_KEY="your-api-key-here" +QDRANT_URL="https://your-cluster.qdrant.io" +QDRANT_API_KEY="your-api-key" +WORKSPACE_DIR="agent_workspace" +``` + +### Step 3: Choose Deployment + +Select your Qdrant deployment option: + +- **In-memory**: For testing and development (data is not persisted) +- **Local server**: For production deployments with persistent storage +- **Qdrant Cloud**: Managed cloud service (recommended for production) + +### Step 4: Configure Database + +Set up the vector database wrapper with your preferred embedding model and collection settings -3. **Choose Deployment**: Select your Qdrant deployment option: - - **In-memory**: For testing and development (data is not persisted) - - **Local server**: For production deployments with persistent storage - - **Qdrant Cloud**: Managed cloud service (recommended for production) +### Step 5: Add Documents -4. **Configure Database**: Set up the vector database wrapper with your preferred embedding model and collection settings +Load documents using individual or batch processing methods -5. **Add Documents**: Load documents using individual or batch processing methods +### Step 6: Create Agent -6. **Create Agent**: Initialize your agent with RAG capabilities and start querying +Initialize your agent with RAG capabilities and start querying ## Code