From cf04413a01462cb3510cdaf1074a7e4441e45555 Mon Sep 17 00:00:00 2001 From: Kye Date: Sat, 29 Jul 2023 12:49:58 -0400 Subject: [PATCH] clean up --- swarms/agents/agent.py | 191 ---------------------------------- swarms/swarms.py | 4 +- swarms/workers/worker_node.py | 2 +- 3 files changed, 3 insertions(+), 194 deletions(-) diff --git a/swarms/agents/agent.py b/swarms/agents/agent.py index 91ab0e25..e69de29b 100644 --- a/swarms/agents/agent.py +++ b/swarms/agents/agent.py @@ -1,191 +0,0 @@ -#base toolset -from swarms.agents.tools.agent_tools import * -from swarms.utils.logger import logger - -from langchain.tools import BaseTool - -from typing import List, Any, Optional -from langchain.memory.chat_message_histories import FileChatMessageHistory - -import logging -from swarms.agents.models.hf import HuggingFaceLLM - -logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') - -class AgentNodeInitializer: - """Useful for spawning autonomous agent instances to accomplish complex tasks.""" - - def __init__(self, - llm: Optional[Any] = None, - tools: Optional[List[BaseTool]] = None, - vectorstore: Optional[List[Any]] = None, - temperature: float = 0.5, - model_type: Optional[str] = None, - human_in_the_loop: bool = True, - model_id: Optional[str] = None, - embedding_size: int = 8192, - system_prompt: Optional[str] = None, - max_iterations: Optional[int] = None, - agent_name: Optional[str] = None, - agent_role: Optional[str] = None, - verbose: bool = False, - openai_api_key: Optional[str] = None): - - if not openai_api_key and (model_type is None or model_type.lower() == 'openai'): - raise ValueError("OpenAI API key cannot be None when model_type is 'openai'") - - self.llm = llm or self.initialize_llm(model_type, model_id, openai_api_key, temperature) - self.tools = tools or [] - self.vectorstore = vectorstore or [] - - self.temperature = temperature - self.model_type = model_type - self.human_in_the_loop = human_in_the_loop - - self.model_id = model_id - self.embedding_size = embedding_size - self.system_prompt = system_prompt - - self.agent_name = agent_name - self.agent_role = agent_role - self.verbose = verbose - - self.openai_api_key = openai_api_key - self.agent = None - - self.initialize_agent() - - def initialize_llm(self, model_type: str, model_id: str, openai_api_key: str, temperature: float): - try: - if model_type.lower() == 'openai': - return ChatOpenAI(openai_api_key=openai_api_key, temperature=temperature) - elif model_type.lower() == 'huggingface': - return HuggingFaceLLM(model_id=model_id, temperature=temperature) - else: - raise ValueError("Invalid model_type. It should be either 'openai' or 'huggingface'") - except Exception as e: - logger.error(f"Failed to initialize language model: {e}") - raise e - - def initialize_agent(self): - try: - self.agent = AutoGPT.from_llm_and_tools( - ai_name=self.agent_name, - ai_role=self.agent_role, - tools=self.tools, - llm=self.llm, - memory=self.vectorstore.as_retriever(search_kwargs={}), - human_in_the_loop=self.human_in_the_loop, - chat_history_memory=FileChatMessageHistory("chat_history.txt"), - verbose=self.verbose, - ) - except Exception as e: - logger.error(f"Error while creating agent: {str(e)}") - raise e - - def add_tool(self, tool: BaseTool): - if not isinstance(tool, BaseTool): - logger.error("Tool must be an instance of BaseTool.") - raise TypeError("Tool must be an instance of BaseTool.") - self.tools.append(tool) - - def run(self, prompt: str) -> str: - if not prompt: - logger.error("Prompt is empty.") - raise ValueError("Prompt is empty.") - try: - self.agent.run([f"{prompt}"]) - return "Task completed by AgentNode" - except Exception as e: - logger.error(f"While running the agent: {str(e)}") - raise e - - -class AgentNode: - def __init__(self, openai_api_key): - if not openai_api_key: - logging.error("OpenAI API key is not provided") - raise ValueError("openai_api_key cannot be None") - - self.openai_api_key = openai_api_key - - def initialize_llm(self, llm_class): - """ - Init LLM - - Params: - llm_class(class): The Language model class. Default is OpenAI. - temperature (float): The Temperature for the language model. Default is 0.5 - """ - try: - # Initialize language model - if self.llm_class == 'openai' or OpenAI: - return llm_class(openai_api_key=self.openai_api_key, temperature=self.temperature) - elif self.model_type == "huggingface": - return HuggingFaceLLM(model_id=self.model_id, temperature=self.temperature) - except Exception as e: - logging.error(f"Failed to initialize language model: {e}") - - def initialize_tools(self, llm_class): - if not llm_class: - logging.error("llm_class not cannot be none") - raise ValueError("llm_class cannot be none") - try: - - logging.info('Creating AgentNode') - llm = self.initialize_llm(llm_class) - web_search = DuckDuckGoSearchRun() - - tools = [ - web_search, - WriteFileTool(root_dir=ROOT_DIR), - ReadFileTool(root_dir=ROOT_DIR), - process_csv, - WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)), - ] - if not tools: - logging.error("Tools are not initialized") - raise ValueError("Tools are not initialized") - return tools - except Exception as e: - logging.error(f"Failed to initialize tools: {e}") - - def initialize_vectorstore(self): - try: - embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) - index = faiss.IndexFlatL2(self.embedding_size) - return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) - except Exception as e: - logging.error(f"Failed to initialize vector store: {e}") - raise - - def create_agent(self, llm_class=ChatOpenAI, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False): - if not llm_class: - logging.error("llm_class cannot be None.") - raise ValueError("llm_class cannot be None.") - try: - agent_tools = self.initialize_tools(llm_class) - vectorstore = self.initialize_vectorstore() - agent = AgentNode(llm=self.initialize_llm(llm_class), tools=agent_tools, vectorstore=vectorstore) - agent.create_agent(ai_name=ai_name, ai_role=ai_role, human_in_the_loop=human_in_the_loop, search_kwargs=search_kwargs, verbose=verbose) - return agent - except Exception as e: - logging.error(f"Failed to create agent node: {e}") - raise - -def agent(openai_api_key, objective): - if not objective or not isinstance(objective, str): - logging.error("Invalid objective") - raise ValueError("A valid objective is required") - - if not openai_api_key: - logging.error("OpenAI API key is not provided") - raise ValueError("OpenAI API key is required") - try: - initializer = AgentNodeInitializer(openai_api_key) - agent = initializer.create_agent() - agent = agent.run(objective) - return agent - except Exception as e: - logging.error(f"An error occured in agent: {e}") - raise diff --git a/swarms/swarms.py b/swarms/swarms.py index c34428fe..3ae7b01d 100644 --- a/swarms/swarms.py +++ b/swarms/swarms.py @@ -55,7 +55,7 @@ class HierarchicalSwarm: self.human_in_the_loop = human_in_the_loop self.embedding_size = embedding_size self.boss_prompt = boss_prompt - self.worker_prompt = worker_prompt + # self.worker_prompt = worker_prompt self.temperature = temperature self.max_iterations = max_iterations self.logging_enabled = logging_enabled @@ -66,7 +66,7 @@ class HierarchicalSwarm: # use_vectorstore=self.use_vectorstore, # embedding_size=self.embedding_size, worker_name=self.worker_name, - worker_prompt=self.worker_prompt, + # worker_prompt=self.worker_prompt, temperature=self.temperature, human_in_the_loop=self.human_in_the_loop, verbose=self.verbose diff --git a/swarms/workers/worker_node.py b/swarms/workers/worker_node.py index 2be9e75c..225197fc 100644 --- a/swarms/workers/worker_node.py +++ b/swarms/workers/worker_node.py @@ -118,7 +118,7 @@ class WorkerNodeInitializer: raise e class WorkerNode: - def __init__(self, openai_api_key, worker_name, worker_role): + def __init__(self, openai_api_key, worker_name, worker_role, worker_prompt): if not openai_api_key: logging.error("OpenAI API key is not provided") raise ValueError("openai_api_key cannot be None")