From d1e53a6b75734586a94fdcfda1cf6de6d2a7d5a4 Mon Sep 17 00:00:00 2001 From: yikes <111034762+twilwa@users.noreply.github.com> Date: Sat, 7 Oct 2023 20:03:52 -0700 Subject: [PATCH] update discordwithweb, configure sourcery --- .gitignore | 3 +- .../agents/.sourcery.yaml => .sourcery.yaml | 2 +- apps/discordwithweb.py | 101 +--------------- swarms/agents/discordwithweb.py | 112 ------------------ 4 files changed, 8 insertions(+), 210 deletions(-) rename swarms/agents/.sourcery.yaml => .sourcery.yaml (96%) delete mode 100644 swarms/agents/discordwithweb.py diff --git a/.gitignore b/.gitignore index 09ebd159..21dc2618 100644 --- a/.gitignore +++ b/.gitignore @@ -179,4 +179,5 @@ cython_debug/ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore # and can be added to the global gitignore or merged into this file. For a more nuclear # option (not recommended) you can uncomment the following to ignore the entire idea folder. -#.idea/ \ No newline at end of file +#.idea/ +.aider* diff --git a/swarms/agents/.sourcery.yaml b/.sourcery.yaml similarity index 96% rename from swarms/agents/.sourcery.yaml rename to .sourcery.yaml index e229d597..23793069 100644 --- a/swarms/agents/.sourcery.yaml +++ b/.sourcery.yaml @@ -7,7 +7,7 @@ # 📚 For a complete reference to this file, see the documentation at # https://docs.sourcery.ai/Configuration/Project-Settings/ -# This file was auto-generated by Sourcery on 2023-10-06 at 17:14. +# This file was auto-generated by Sourcery on 2023-10-06 at 18:33. version: '1' # The schema version of this config file diff --git a/apps/discordwithweb.py b/apps/discordwithweb.py index 7b31d266..917d0e08 100644 --- a/apps/discordwithweb.py +++ b/apps/discordwithweb.py @@ -2,115 +2,25 @@ import discord from discord.ext import commands import os - from swarms.agents import Worker from swarms.agents.memory import VectorStoreRetriever from swarms.tools.autogpt import WebpageQATool -""" -Custom tools for web search and memory retrieval. - -This code snippet defines two custom tools, `WebSearchTool` and `MemoryTool`, which are subclasses of the `BaseTool` class. The `WebSearchTool` makes a request to a search engine API and extracts the text from the top result. The `MemoryTool` retrieves relevant documents from a vector store and extracts the text from the document. - -Example Usage: -```python -web_search = WebSearchTool() -result = web_search.run("python programming") -print(result) -# Output: The text from the top search result for "python programming" - -memory_tool = MemoryTool(retriever) -result = memory_tool.run("python programming") -print(result) -# Output: The text from the relevant document retrieved from the vector store for "python programming" -``` - -Inputs: -- `query` (str): The search query or document retrieval query. - -Flow: -1. The `WebSearchTool` makes a request to the Bing search engine API with the provided query. -2. The API response is stored in the `response` variable. -3. The text from the top search result is extracted from the API response and stored in the `text` variable. -4. The `MemoryTool` retrieves relevant documents from the vector store using the provided query. -5. The relevant document is stored in the `relevant_doc` variable. -6. The text from the relevant document is extracted and stored in the `text` variable. - -Outputs: -- `text` (str): The extracted text from the top search result or relevant document. -""" - -# Custom tools -class WebSearchTool(BaseTool): - - def run(self, query: str) -> str: - - # Make request to search engine API - response = requests.get( - "https://api.bing.com/v7.0/search", - params={ - "q": query, - "count": 1 - }, - headers={ - "Ocp-Apim-Subscription-Key": "YOUR_API_KEY" - } - ) - - # Extract text from top result - top_result = response.json()["webPages"]["value"][0] - text = top_result["snippet"] - - return text - - -class MemoryTool(BaseTool): - - def __init__(self, retriever): - self.retriever = retriever - - def run(self, query: str) -> str: - - # Retrieve relevant document from vectorstore - docs = self.retriever.retrieve(query) - relevant_doc = docs[0] - - # Extract text from document - text = relevant_doc.text - - return text - -""" -This code sets up a Discord bot that responds to user queries. - -The code initializes the Discord bot, sets up the OpenAI API key, initializes the memory retrieval system, creates custom tools for web search and memory retrieval, creates an agent with the OpenAI language model, memory, and tools, and defines a command for the bot to handle user queries. When a user sends a query, the agent runs the query and sends the response back to the user. - -Inputs: -- ctx (object): The context object representing the message context in Discord. -- input (str): The user query input. - -Outputs: -- response (str): The response generated by the agent based on the user query. -""" - # Discord bot setup intents = discord.Intents.default() bot = commands.Bot(command_prefix='!', intents=intents) -# Worker setup -worker = Worker() - # Memory setup vectorstore_client = VectorStoreClient() retriever = VectorStoreRetriever(vectorstore_client) # Tools setup -web_search = WebpageQATool() -memory = MemoryTool(retriever) -tools = [web_search, memory] +web_search = WebSearchTool(retriever) +memory_tool = MemoryTool(retriever) +tools = [web_search, memory_tool] # Create the agent -agent = Agent( +agent = Worker( name="DiscordAssistant", llm=worker, memory=retriever, @@ -119,8 +29,7 @@ agent = Agent( @bot.command() async def query(ctx, *, input): - response = web_search.run(input) + response = agent.run(input) await ctx.send(response) bot.run(os.getenv("DISCORD_BOT_TOKEN")) -""" diff --git a/swarms/agents/discordwithweb.py b/swarms/agents/discordwithweb.py deleted file mode 100644 index cb113598..00000000 --- a/swarms/agents/discordwithweb.py +++ /dev/null @@ -1,112 +0,0 @@ -import discord -from discord.ext import commands - -import os -import openai -import requests - -from swarms.agents import Agent -from swarms.agents.memory import VectorStoreRetriever -from swarms.tools.base import BaseTool - -""" -Custom tools for web search and memory retrieval. - -This code snippet defines two custom tools, `WebSearchTool` and `MemoryTool`, which are subclasses of the `BaseTool` class. The `WebSearchTool` makes a request to a search engine API and extracts the text from the top result. The `MemoryTool` retrieves relevant documents from a vector store and extracts the text from the document. - -Example Usage: -```python -web_search = WebSearchTool() -result = web_search.run("python programming") -print(result) -# Output: The text from the top search result for "python programming" - -memory_tool = MemoryTool(retriever) -result = memory_tool.run("python programming") -print(result) -# Output: The text from the relevant document retrieved from the vector store for "python programming" -``` - -Inputs: -- `query` (str): The search query or document retrieval query. - -Flow: -1. The `WebSearchTool` makes a request to the Bing search engine API with the provided query. -2. The API response is stored in the `response` variable. -3. The text from the top search result is extracted from the API response and stored in the `text` variable. -4. The `MemoryTool` retrieves relevant documents from the vector store using the provided query. -5. The relevant document is stored in the `relevant_doc` variable. -6. The text from the relevant document is extracted and stored in the `text` variable. - -Outputs: -- `text` (str): The extracted text from the top search result or relevant document. -""" - -# Custom tools -class WebSearchTool(BaseTool): - - def run(self, query: str) -> str: - - # Make request to search engine API - response = requests.get( - "https://api.bing.com/v7.0/search", - params={ - "q": query, - "count": 1 - }, - headers={ - "Ocp-Apim-Subscription-Key": "YOUR_API_KEY" - } - ) - - # Extract text from top result - top_result = response.json()["webPages"]["value"][0] - return top_result["snippet"] - - -class MemoryTool(BaseTool): - - def __init__(self, retriever): - self.retriever = retriever - - def run(self, query: str) -> str: - - # Retrieve relevant document from vectorstore - docs = self.retriever.retrieve(query) - relevant_doc = docs[0] - - # Extract text from document - text = relevant_doc.text - - return text - -# Discord bot setup -intents = discord.Intents.default() -bot = commands.Bot(command_prefix='!', intents=intents) - -# OpenAI API setup -openai.api_key = os.getenv("OPENAI_API_KEY") - -# Memory setup -vectorstore_client = VectorStoreClient() -retriever = VectorStoreRetriever(vectorstore_client) - -# Tools setup -web_search = WebSearchTool() -memory = MemoryTool(retriever) -tools = [web_search, memory] - -# Create the agent -agent = Agent( - name="DiscordAssistant", - llm=openai, - memory=retriever, - tools=tools -) - -@bot.command() -async def query(ctx, *, input): - response = agent.run(input) - await ctx.send(response) - -bot.run(os.getenv("DISCORD_BOT_TOKEN"))