diff --git a/examples/multi_agent/test_sequentialworkflow_streaming.py b/examples/multi_agent/test_sequentialworkflow_streaming.py deleted file mode 100644 index 95fcf55d..00000000 --- a/examples/multi_agent/test_sequentialworkflow_streaming.py +++ /dev/null @@ -1,59 +0,0 @@ -from swarms.structs.agent import Agent -from swarms.structs.sequential_workflow import SequentialWorkflow - -def streaming_callback(token): - buffer.append(token) - if len(buffer) >= 20 or token.endswith("\n"): - print("".join(buffer), end="", flush=True) - buffer.clear() - -def run_workflow_with_streaming_callback(task, streaming_callback): - - agent1 = Agent( - name="Research Agent", - description="A research agent that can answer questions", - model_name="gpt-4o", - system_prompt=( - "You are a ResearchAgent. Your task is to research and gather " - "information about the given topic. Provide comprehensive research " - "findings and key insights." - ), - max_loops=1, - interactive=True, - verbose=True, - ) - - agent2 = Agent( - name="Analysis Agent", - description="An analysis agent that draws conclusions from research", - model_name="gpt-4o-mini", - system_prompt=( - "You are an AnalysisAgent. Your task is to analyze the research " - "provided by the previous agent and draw meaningful conclusions. " - "Provide detailed analysis and actionable insights." - ), - max_loops=1, - interactive=True, - verbose=True, - ) - - workflow = SequentialWorkflow( - id="research_analysis_workflow", - name="Research Analysis Workflow", - description="A sequential workflow that researches and analyzes topics", - agents=[agent1, agent2], - max_loops=1, - output_type="str", - streaming_callback=streaming_callback, - multi_agent_collab_prompt=True, - ) - return workflow.run(task) - -if __name__ == "__main__": - - buffer = [] - - run_workflow_with_streaming_callback( - task="What are the latest advancements in AI?", - streaming_callback=streaming_callback, - ) \ No newline at end of file