From d86d8ec1902292f2a69eee3555513b8e087c2561 Mon Sep 17 00:00:00 2001 From: pliny <133052465+elder-plinius@users.noreply.github.com> Date: Sat, 18 Nov 2023 14:30:51 -0800 Subject: [PATCH] Delete swarms/models/autotemp.py --- swarms/models/autotemp.py | 101 -------------------------------------- 1 file changed, 101 deletions(-) delete mode 100644 swarms/models/autotemp.py diff --git a/swarms/models/autotemp.py b/swarms/models/autotemp.py deleted file mode 100644 index c3abb894..00000000 --- a/swarms/models/autotemp.py +++ /dev/null @@ -1,101 +0,0 @@ -import re -from concurrent.futures import ThreadPoolExecutor, as_completed -from swarms.models.openai_models import OpenAIChat - - -class AutoTempAgent: - """ - AutoTemp is a tool for automatically selecting the best temperature setting for a given task. - - Flow: - 1. Generate outputs at a range of temperature settings. - 2. Evaluate each output using the default temperature setting. - 3. Select the best output based on the evaluation score. - 4. Return the best output. - - - Args: - temperature (float, optional): The default temperature setting to use. Defaults to 0.5. - api_key (str, optional): Your OpenAI API key. Defaults to None. - alt_temps ([type], optional): A list of alternative temperature settings to try. Defaults to None. - auto_select (bool, optional): If True, the best temperature setting will be automatically selected. Defaults to True. - max_workers (int, optional): The maximum number of workers to use when generating outputs. Defaults to 6. - - Returns: - [type]: [description] - - Examples: - >>> from swarms.demos.autotemp import AutoTemp - >>> autotemp = AutoTemp() - >>> autotemp.run("Generate a 10,000 word blog on mental clarity and the benefits of meditation.", "0.4,0.6,0.8,1.0,1.2,1.4") - Best AutoTemp Output (Temp 0.4 | Score: 100.0): - Generate a 10,000 word blog on mental clarity and the benefits of meditation. - - """ - - def __init__( - self, - temperature: float = 0.5, - api_key: str = None, - alt_temps=None, - auto_select=True, - max_workers=6, - ): - self.alt_temps = alt_temps if alt_temps else [0.4, 0.6, 0.8, 1.0, 1.2, 1.4] - self.auto_select = auto_select - self.max_workers = max_workers - self.temperature = temperature - self.alt_temps = alt_temps - self.llm = OpenAIChat( - openai_api_key=api_key, - temperature=temperature, - ) - - def evaluate_output(self, output: str): - """Evaluate the output using the default temperature setting.""" - eval_prompt = f""" - Evaluate the following output which was generated at a temperature setting of {self.temperature}. - Provide a precise score from 0.0 to 100.0, considering the criteria of relevance, clarity, utility, pride, and delight. - - Output to evaluate: - --- - {output} - --- - """ - score_text = self.llm(prompt=eval_prompt) - score_match = re.search(r"\b\d+(\.\d)?\b", score_text) - return round(float(score_match.group()), 1) if score_match else 0.0 - - def run(self, task: str, temperature_string): - """Run the AutoTemp agent.""" - temperature_list = [ - float(temp.strip()) for temp in temperature_string.split(",") - ] - outputs = {} - scores = {} - with ThreadPoolExecutor(max_workers=self.max_workers) as executor: - future_to_temp = { - executor.submit(self.llm.generate, task, temp): temp - for temp in temperature_list - } - for future in as_completed(future_to_temp): - temp = future_to_temp[future] - output_text = future.result() - outputs[temp] = output_text - scores[temp] = self.evaluate_output(output_text, temp) - - if not scores: - return "No valid outputs generated.", None - - sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True) - best_temp, best_score = sorted_scores[0] - best_output = outputs[best_temp] - - return ( - f"Best AutoTemp Output (Temp {best_temp} | Score: {best_score}):\n{best_output}" - if self.auto_select - else "\n".join( - f"Temp {temp} | Score: {score}:\n{outputs[temp]}" - for temp, score in sorted_scores - ) - )