diff --git a/swarms/tools/core/__init__.py b/swarms/agents/embeddings/__init__.py
similarity index 100%
rename from swarms/tools/core/__init__.py
rename to swarms/agents/embeddings/__init__.py
diff --git a/swarms/agents/embeddings/base.py b/swarms/agents/embeddings/base.py
new file mode 100644
index 00000000..532b99cc
--- /dev/null
+++ b/swarms/agents/embeddings/base.py
@@ -0,0 +1,23 @@
+"""Interface for embedding models."""
+from abc import ABC, abstractmethod
+from typing import List
+
+
+class Embeddings(ABC):
+    """Interface for embedding models."""
+
+    @abstractmethod
+    def embed_documents(self, texts: List[str]) -> List[List[float]]:
+        """Embed search docs."""
+
+    @abstractmethod
+    def embed_query(self, text: str) -> List[float]:
+        """Embed query text."""
+
+    async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
+        """Embed search docs."""
+        raise NotImplementedError
+
+    async def aembed_query(self, text: str) -> List[float]:
+        """Embed query text."""
+        raise NotImplementedError
\ No newline at end of file
diff --git a/swarms/tools/core/code_interpreter/__init__.py b/swarms/agents/memory/__init__.py
similarity index 100%
rename from swarms/tools/core/code_interpreter/__init__.py
rename to swarms/agents/memory/__init__.py
diff --git a/swarms/agents/memory/base.py b/swarms/agents/memory/base.py
new file mode 100644
index 00000000..4b14a1af
--- /dev/null
+++ b/swarms/agents/memory/base.py
@@ -0,0 +1,505 @@
+"""Interface for vector stores."""
+
+from __future__ import annotations
+
+import asyncio
+import math
+import warnings
+from abc import ABC, abstractmethod
+from functools import partial
+
+from typing import (
+    Any,
+    Callable,
+    ClassVar,
+    Collection,
+    Dict,
+    Iterable,
+    List,
+    Optional,
+    Tuple,
+    Type,
+    TypeVar,
+)
+
+from pydantic import Field, root_validator
+
+from langchain.callbacks.manager import (
+    AsyncCallbackManagerForRetrieverRun,
+    CallbackManagerForRetrieverRun,
+)
+from langchain.docstore.document import Document
+from langchain.embeddings.base import Embeddings
+from langchain.schema import BaseRetriever
+
+VST = TypeVar("VST", bound="VectorStore")
+
+
+class VectorStore(ABC):
+    """Interface for vector stores."""
+
+    @abstractmethod
+    def add_texts(
+        self,
+        texts: Iterable[str],
+        metadatas: Optional[List[dict]] = None,
+        **kwargs: Any,
+    ) -> List[str]:
+        """Run more texts through the embeddings and add to the vectorstore.
+
+        Args:
+            texts: Iterable of strings to add to the vectorstore.
+            metadatas: Optional list of metadatas associated with the texts.
+            kwargs: vectorstore specific parameters
+
+        Returns:
+            List of ids from adding the texts into the vectorstore.
+        """
+
+    def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
+        """Delete by vector ID or other criteria.
+
+        Args:
+            ids: List of ids to delete.
+            **kwargs: Other keyword arguments that subclasses might use.
+
+        Returns:
+            Optional[bool]: True if deletion is successful,
+            False otherwise, None if not implemented.
+        """
+
+        raise NotImplementedError("delete method must be implemented by subclass.")
+
+    async def aadd_texts(
+        self,
+        texts: Iterable[str],
+        metadatas: Optional[List[dict]] = None,
+        **kwargs: Any,
+    ) -> List[str]:
+        """Run more texts through the embeddings and add to the vectorstore."""
+        raise NotImplementedError
+
+    def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
+        """Run more documents through the embeddings and add to the vectorstore.
+
+        Args:
+            documents (List[Document]: Documents to add to the vectorstore.
+
+        Returns:
+            List[str]: List of IDs of the added texts.
+        """
+        # TODO: Handle the case where the user doesn't provide ids on the Collection
+        texts = [doc.page_content for doc in documents]
+        metadatas = [doc.metadata for doc in documents]
+        return self.add_texts(texts, metadatas, **kwargs)
+
+    async def aadd_documents(
+        self, documents: List[Document], **kwargs: Any
+    ) -> List[str]:
+        """Run more documents through the embeddings and add to the vectorstore.
+
+        Args:
+            documents (List[Document]: Documents to add to the vectorstore.
+
+        Returns:
+            List[str]: List of IDs of the added texts.
+        """
+        texts = [doc.page_content for doc in documents]
+        metadatas = [doc.metadata for doc in documents]
+        return await self.aadd_texts(texts, metadatas, **kwargs)
+
+    def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]:
+        """Return docs most similar to query using specified search type."""
+        if search_type == "similarity":
+            return self.similarity_search(query, **kwargs)
+        elif search_type == "mmr":
+            return self.max_marginal_relevance_search(query, **kwargs)
+        else:
+            raise ValueError(
+                f"search_type of {search_type} not allowed. Expected "
+                "search_type to be 'similarity' or 'mmr'."
+            )
+
+    async def asearch(
+        self, query: str, search_type: str, **kwargs: Any
+    ) -> List[Document]:
+        """Return docs most similar to query using specified search type."""
+        if search_type == "similarity":
+            return await self.asimilarity_search(query, **kwargs)
+        elif search_type == "mmr":
+            return await self.amax_marginal_relevance_search(query, **kwargs)
+        else:
+            raise ValueError(
+                f"search_type of {search_type} not allowed. Expected "
+                "search_type to be 'similarity' or 'mmr'."
+            )
+
+    @abstractmethod
+    def similarity_search(
+        self, query: str, k: int = 4, **kwargs: Any
+    ) -> List[Document]:
+        """Return docs most similar to query."""
+
+    @staticmethod
+    def _euclidean_relevance_score_fn(distance: float) -> float:
+        """Return a similarity score on a scale [0, 1]."""
+        return 1.0 - distance / math.sqrt(2)
+
+    @staticmethod
+    def _cosine_relevance_score_fn(distance: float) -> float:
+        """Normalize the distance to a score on a scale [0, 1]."""
+
+        return 1.0 - distance
+
+    @staticmethod
+    def _max_inner_product_relevance_score_fn(distance: float) -> float:
+        """Normalize the distance to a score on a scale [0, 1]."""
+        if distance > 0:
+            return 1.0 - distance
+
+        return -1.0 * distance
+
+    def _select_relevance_score_fn(self) -> Callable[[float], float]:
+        """
+        The 'correct' relevance function
+        may differ depending on a few things, including:
+        - the distance / similarity metric used by the VectorStore
+        - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
+        - embedding dimensionality
+        - etc.
+
+        Vectorstores should define their own selection based method of relevance.
+        """
+        raise NotImplementedError
+
+    def similarity_search_with_score(
+        self, *args: Any, **kwargs: Any
+    ) -> List[Tuple[Document, float]]:
+        """Run similarity search with distance."""
+        raise NotImplementedError
+
+    def _similarity_search_with_relevance_scores(
+        self,
+        query: str,
+        k: int = 4,
+        **kwargs: Any,
+    ) -> List[Tuple[Document, float]]:
+        """
+        Default similarity search with relevance scores. Modify if necessary
+        in subclass.
+        Return docs and relevance scores in the range [0, 1].
+
+        0 is dissimilar, 1 is most similar.
+
+        Args:
+            query: input text
+            k: Number of Documents to return. Defaults to 4.
+            **kwargs: kwargs to be passed to similarity search. Should include:
+                score_threshold: Optional, a floating point value between 0 to 1 to
+                    filter the resulting set of retrieved docs
+
+        Returns:
+            List of Tuples of (doc, similarity_score)
+        """
+        relevance_score_fn = self._select_relevance_score_fn()
+        docs_and_scores = self.similarity_search_with_score(query, k, **kwargs)
+        return [(doc, relevance_score_fn(score)) for doc, score in docs_and_scores]
+
+    def similarity_search_with_relevance_scores(
+        self,
+        query: str,
+        k: int = 4,
+        **kwargs: Any,
+    ) -> List[Tuple[Document, float]]:
+        """Return docs and relevance scores in the range [0, 1].
+
+        0 is dissimilar, 1 is most similar.
+
+        Args:
+            query: input text
+            k: Number of Documents to return. Defaults to 4.
+            **kwargs: kwargs to be passed to similarity search. Should include:
+                score_threshold: Optional, a floating point value between 0 to 1 to
+                    filter the resulting set of retrieved docs
+
+        Returns:
+            List of Tuples of (doc, similarity_score)
+        """
+        score_threshold = kwargs.pop("score_threshold", None)
+
+        docs_and_similarities = self._similarity_search_with_relevance_scores(
+            query, k=k, **kwargs
+        )
+        if any(
+            similarity < 0.0 or similarity > 1.0
+            for _, similarity in docs_and_similarities
+        ):
+            warnings.warn(
+                "Relevance scores must be between"
+                f" 0 and 1, got {docs_and_similarities}"
+            )
+
+        if score_threshold is not None:
+            docs_and_similarities = [
+                (doc, similarity)
+                for doc, similarity in docs_and_similarities
+                if similarity >= score_threshold
+            ]
+            if len(docs_and_similarities) == 0:
+                warnings.warn(
+                    "No relevant docs were retrieved using the relevance score"
+                    f" threshold {score_threshold}"
+                )
+        return docs_and_similarities
+
+    async def asimilarity_search_with_relevance_scores(
+        self, query: str, k: int = 4, **kwargs: Any
+    ) -> List[Tuple[Document, float]]:
+        """Return docs most similar to query."""
+
+        func = partial(self.similarity_search_with_relevance_scores, query, k, **kwargs)
+        return await asyncio.get_event_loop().run_in_executor(None, func)
+
+    async def asimilarity_search(
+        self, query: str, k: int = 4, **kwargs: Any
+    ) -> List[Document]:
+        """Return docs most similar to query."""
+        func = partial(self.similarity_search, query, k, **kwargs)
+        return await asyncio.get_event_loop().run_in_executor(None, func)
+
+    def similarity_search_by_vector(
+        self, embedding: List[float], k: int = 4, **kwargs: Any
+    ) -> List[Document]:
+        """Return docs most similar to embedding vector.
+
+        Args:
+            embedding: Embedding to look up documents similar to.
+            k: Number of Documents to return. Defaults to 4.
+
+        Returns:
+            List of Documents most similar to the query vector.
+        """
+        raise NotImplementedError
+
+    async def asimilarity_search_by_vector(
+        self, embedding: List[float], k: int = 4, **kwargs: Any
+    ) -> List[Document]:
+        """Return docs most similar to embedding vector."""
+
+        # This is a temporary workaround to make the similarity search
+        # asynchronous. The proper solution is to make the similarity search
+        # asynchronous in the vector store implementations.
+        func = partial(self.similarity_search_by_vector, embedding, k, **kwargs)
+        return await asyncio.get_event_loop().run_in_executor(None, func)
+
+    def max_marginal_relevance_search(
+        self,
+        query: str,
+        k: int = 4,
+        fetch_k: int = 20,
+        lambda_mult: float = 0.5,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Return docs selected using the maximal marginal relevance.
+
+        Maximal marginal relevance optimizes for similarity to query AND diversity
+        among selected documents.
+
+        Args:
+            query: Text to look up documents similar to.
+            k: Number of Documents to return. Defaults to 4.
+            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
+            lambda_mult: Number between 0 and 1 that determines the degree
+                        of diversity among the results with 0 corresponding
+                        to maximum diversity and 1 to minimum diversity.
+                        Defaults to 0.5.
+        Returns:
+            List of Documents selected by maximal marginal relevance.
+        """
+        raise NotImplementedError
+
+    async def amax_marginal_relevance_search(
+        self,
+        query: str,
+        k: int = 4,
+        fetch_k: int = 20,
+        lambda_mult: float = 0.5,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Return docs selected using the maximal marginal relevance."""
+        func = partial(
+            self.max_marginal_relevance_search, query, k, fetch_k, lambda_mult, **kwargs
+        )
+        return await asyncio.get_event_loop().run_in_executor(None, func)
+
+    def max_marginal_relevance_search_by_vector(
+        self,
+        embedding: List[float],
+        k: int = 4,
+        fetch_k: int = 20,
+        lambda_mult: float = 0.5,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Return docs selected using the maximal marginal relevance.
+
+        Maximal marginal relevance optimizes for similarity to query AND diversity
+        among selected documents.
+
+        Args:
+            embedding: Embedding to look up documents similar to.
+            k: Number of Documents to return. Defaults to 4.
+            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
+            lambda_mult: Number between 0 and 1 that determines the degree
+                        of diversity among the results with 0 corresponding
+                        to maximum diversity and 1 to minimum diversity.
+                        Defaults to 0.5.
+        Returns:
+            List of Documents selected by maximal marginal relevance.
+        """
+        raise NotImplementedError
+
+    async def amax_marginal_relevance_search_by_vector(
+        self,
+        embedding: List[float],
+        k: int = 4,
+        fetch_k: int = 20,
+        lambda_mult: float = 0.5,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Return docs selected using the maximal marginal relevance."""
+        raise NotImplementedError
+
+    @classmethod
+    def from_documents(
+        cls: Type[VST],
+        documents: List[Document],
+        embedding: Embeddings,
+        **kwargs: Any,
+    ) -> VST:
+        """Return VectorStore initialized from documents and embeddings."""
+        texts = [d.page_content for d in documents]
+        metadatas = [d.metadata for d in documents]
+        return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
+
+    @classmethod
+    async def afrom_documents(
+        cls: Type[VST],
+        documents: List[Document],
+        embedding: Embeddings,
+        **kwargs: Any,
+    ) -> VST:
+        """Return VectorStore initialized from documents and embeddings."""
+        texts = [d.page_content for d in documents]
+        metadatas = [d.metadata for d in documents]
+        return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs)
+
+    @classmethod
+    @abstractmethod
+    def from_texts(
+        cls: Type[VST],
+        texts: List[str],
+        embedding: Embeddings,
+        metadatas: Optional[List[dict]] = None,
+        **kwargs: Any,
+    ) -> VST:
+        """Return VectorStore initialized from texts and embeddings."""
+
+    @classmethod
+    async def afrom_texts(
+        cls: Type[VST],
+        texts: List[str],
+        embedding: Embeddings,
+        metadatas: Optional[List[dict]] = None,
+        **kwargs: Any,
+    ) -> VST:
+        """Return VectorStore initialized from texts and embeddings."""
+        raise NotImplementedError
+
+    def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever:
+        return VectorStoreRetriever(vectorstore=self, **kwargs)
+
+
+class VectorStoreRetriever(BaseRetriever):
+    vectorstore: VectorStore
+    search_type: str = "similarity"
+    search_kwargs: dict = Field(default_factory=dict)
+    allowed_search_types: ClassVar[Collection[str]] = (
+        "similarity",
+        "similarityatscore_threshold",
+        "mmr",
+    )
+
+    class Config:
+        """Configuration for this pydantic object."""
+
+        arbitrary_types_allowed = True
+
+    @root_validator()
+    def validate_search_type(cls, values: Dict) -> Dict:
+        """Validate search type."""
+        search_type = values["search_type"]
+        if search_type not in cls.allowed_search_types:
+            raise ValueError(
+                f"search_type of {search_type} not allowed. Valid values are: "
+                f"{cls.allowed_search_types}"
+            )
+        if search_type == "similarity_score_threshold":
+            score_threshold = values["search_kwargs"].get("score_threshold")
+            if (score_threshold is None) or (not isinstance(score_threshold, float)):
+                raise ValueError(
+                    "`score_threshold` is not specified with a float value(0~1) "
+                    "in `search_kwargs`."
+                )
+        return values
+
+    def _get_relevant_documents(
+        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
+    ) -> List[Document]:
+        if self.search_type == "similarity":
+            docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
+        elif self.search_type == "similarity_score_threshold":
+            docs_and_similarities = (
+                self.vectorstore.similarity_search_with_relevance_scores(
+                    query, **self.search_kwargs
+                )
+            )
+            docs = [doc for doc, _ in docs_and_similarities]
+        elif self.search_type == "mmr":
+            docs = self.vectorstore.max_marginal_relevance_search(
+                query, **self.search_kwargs
+            )
+        else:
+            raise ValueError(f"search_type of {self.search_type} not allowed.")
+        return docs
+
+    async def _aget_relevant_documents(
+        self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
+    ) -> List[Document]:
+        if self.search_type == "similarity":
+            docs = await self.vectorstore.asimilarity_search(
+                query, **self.search_kwargs
+            )
+        elif self.search_type == "similarity_score_threshold":
+            docs_and_similarities = (
+                await self.vectorstore.asimilarity_search_with_relevance_scores(
+                    query, **self.search_kwargs
+                )
+            )
+            docs = [doc for doc, _ in docs_and_similarities]
+        elif self.search_type == "mmr":
+            docs = await self.vectorstore.amax_marginal_relevance_search(
+                query, **self.search_kwargs
+            )
+        else:
+            raise ValueError(f"search_type of {self.search_type} not allowed.")
+        return docs
+
+    def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
+        """Add documents to vectorstore."""
+        return self.vectorstore.add_documents(documents, **kwargs)
+
+    async def aadd_documents(
+        self, documents: List[Document], **kwargs: Any
+    ) -> List[str]:
+        """Add documents to vectorstore."""
+        return await self.vectorstore.aadd_documents(documents, **kwargs)
\ No newline at end of file
diff --git a/swarms/agents/memory/chroma.py b/swarms/agents/memory/chroma.py
new file mode 100644
index 00000000..17ad90d6
--- /dev/null
+++ b/swarms/agents/memory/chroma.py
@@ -0,0 +1,593 @@
+"""Wrapper around ChromaDB embeddings platform."""
+from __future__ import annotations
+
+import logging
+import uuid
+from typing import (
+    TYPE_CHECKING,
+    Any,
+    Callable,
+    Dict,
+    Iterable,
+    List,
+    Optional,
+    Tuple,
+    Type,
+)
+
+import numpy as np
+
+from langchain.docstore.document import Document
+from langchain.embeddings.base import Embeddings
+from langchain.utils import xor_args
+from langchain.vectorstores.base import VectorStore
+from langchain.vectorstores.utils import maximal_marginal_relevance
+
+if TYPE_CHECKING:
+    import chromadb
+    import chromadb.config
+    from chromadb.api.types import ID, OneOrMany, Where, WhereDocument
+
+logger = logging.getLogger()
+DEFAULT_K = 4  # Number of Documents to return.
+
+
+def _results_to_docs(results: Any) -> List[Document]:
+    return [doc for doc, _ in _results_to_docs_and_scores(results)]
+
+
+def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
+    return [
+        # TODO: Chroma can do batch querying,
+        # we shouldn't hard code to the 1st result
+        (Document(page_content=result[0], metadata=result[1] or {}), result[2])
+        for result in zip(
+            results["documents"][0],
+            results["metadatas"][0],
+            results["distances"][0],
+        )
+    ]
+
+
+class Chroma(VectorStore):
+    """Wrapper around ChromaDB embeddings platform.
+
+    To use, you should have the ``chromadb`` python package installed.
+
+    Example:
+        .. code-block:: python
+
+                from langchain.vectorstores import Chroma
+                from langchain.embeddings.openai import OpenAIEmbeddings
+
+                embeddings = OpenAIEmbeddings()
+                vectorstore = Chroma("langchain_store", embeddings)
+    """
+
+    _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
+
+    def __init__(
+        self,
+        collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
+        embedding_function: Optional[Embeddings] = None,
+        persist_directory: Optional[str] = None,
+        client_settings: Optional[chromadb.config.Settings] = None,
+        collection_metadata: Optional[Dict] = None,
+        client: Optional[chromadb.Client] = None,
+        relevance_score_fn: Optional[Callable[[float], float]] = None,
+    ) -> None:
+        """Initialize with Chroma client."""
+        try:
+            import chromadb
+            import chromadb.config
+        except ImportError:
+            raise ValueError(
+                "Could not import chromadb python package. "
+                "Please install it with `pip install chromadb`."
+            )
+
+        if client is not None:
+            self._client_settings = client_settings
+            self._client = client
+            self._persist_directory = persist_directory
+        else:
+            if client_settings:
+                _client_settings = client_settings
+            elif persist_directory:
+                # Maintain backwards compatibility with chromadb < 0.4.0
+                major, minor, _ = chromadb.__version__.split(".")
+                if int(major) == 0 and int(minor) < 4:
+                    _client_settings = chromadb.config.Settings(
+                        chroma_db_impl="duckdb+parquet",
+                    )
+                else:
+                    _client_settings = chromadb.config.Settings(is_persistent=True)
+                _client_settings.persist_directory = persist_directory
+            else:
+                _client_settings = chromadb.config.Settings()
+            self._client_settings = _client_settings
+            self._client = chromadb.Client(_client_settings)
+            self._persist_directory = (
+                _client_settings.persist_directory or persist_directory
+            )
+
+        self._embedding_function = embedding_function
+        self._collection = self._client.get_or_create_collection(
+            name=collection_name,
+            embedding_function=self._embedding_function.embed_documents
+            if self._embedding_function is not None
+            else None,
+            metadata=collection_metadata,
+        )
+        self.override_relevance_score_fn = relevance_score_fn
+
+    @xor_args(("query_texts", "query_embeddings"))
+    def __query_collection(
+        self,
+        query_texts: Optional[List[str]] = None,
+        query_embeddings: Optional[List[List[float]]] = None,
+        n_results: int = 4,
+        where: Optional[Dict[str, str]] = None,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Query the chroma collection."""
+        try:
+            import chromadb  # noqa: F401
+        except ImportError:
+            raise ValueError(
+                "Could not import chromadb python package. "
+                "Please install it with `pip install chromadb`."
+            )
+        return self._collection.query(
+            query_texts=query_texts,
+            query_embeddings=query_embeddings,
+            n_results=n_results,
+            where=where,
+            **kwargs,
+        )
+
+    def add_texts(
+        self,
+        texts: Iterable[str],
+        metadatas: Optional[List[dict]] = None,
+        ids: Optional[List[str]] = None,
+        **kwargs: Any,
+    ) -> List[str]:
+        """Run more texts through the embeddings and add to the vectorstore.
+
+        Args:
+            texts (Iterable[str]): Texts to add to the vectorstore.
+            metadatas (Optional[List[dict]], optional): Optional list of metadatas.
+            ids (Optional[List[str]], optional): Optional list of IDs.
+
+        Returns:
+            List[str]: List of IDs of the added texts.
+        """
+        # TODO: Handle the case where the user doesn't provide ids on the Collection
+        if ids is None:
+            ids = [str(uuid.uuid1()) for _ in texts]
+        embeddings = None
+        if self._embedding_function is not None:
+            embeddings = self._embedding_function.embed_documents(list(texts))
+
+        if metadatas:
+            texts = list(texts)
+            empty = []
+            non_empty = []
+            for i, m in enumerate(metadatas):
+                if m:
+                    non_empty.append(i)
+                else:
+                    empty.append(i)
+            if non_empty:
+                metadatas = [metadatas[i] for i in non_empty]
+                texts_with_metadatas = [texts[i] for i in non_empty]
+                embeddings_with_metadatas = (
+                    [embeddings[i] for i in non_empty] if embeddings else None
+                )
+                ids_with_metadata = [ids[i] for i in non_empty]
+                self._collection.upsert(
+                    metadatas=metadatas,
+                    embeddings=embeddings_with_metadatas,
+                    documents=texts_with_metadatas,
+                    ids=ids_with_metadata,
+                )
+
+            texts = [texts[j] for j in empty]
+            embeddings = [embeddings[j] for j in empty] if embeddings else None
+            ids = [ids[j] for j in empty]
+
+        if texts:
+            self._collection.upsert(embeddings=embeddings, documents=texts, ids=ids)
+        return ids
+
+    def similarity_search(
+        self,
+        query: str,
+        k: int = DEFAULT_K,
+        filter: Optional[Dict[str, str]] = None,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Run similarity search with Chroma.
+
+        Args:
+            query (str): Query text to search for.
+            k (int): Number of results to return. Defaults to 4.
+            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
+
+        Returns:
+            List[Document]: List of documents most similar to the query text.
+        """
+        docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
+        return [doc for doc, _ in docs_and_scores]
+
+    def similarity_search_by_vector(
+        self,
+        embedding: List[float],
+        k: int = DEFAULT_K,
+        filter: Optional[Dict[str, str]] = None,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Return docs most similar to embedding vector.
+        Args:
+            embedding (List[float]): Embedding to look up documents similar to.
+            k (int): Number of Documents to return. Defaults to 4.
+            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
+        Returns:
+            List of Documents most similar to the query vector.
+        """
+        results = self.__query_collection(
+            query_embeddings=embedding, n_results=k, where=filter
+        )
+        return _results_to_docs(results)
+
+    def similarity_search_by_vector_with_relevance_scores(
+        self,
+        embedding: List[float],
+        k: int = DEFAULT_K,
+        filter: Optional[Dict[str, str]] = None,
+        **kwargs: Any,
+    ) -> List[Tuple[Document, float]]:
+        """
+        Return docs most similar to embedding vector and similarity score.
+
+        Args:
+            embedding (List[float]): Embedding to look up documents similar to.
+            k (int): Number of Documents to return. Defaults to 4.
+            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
+
+        Returns:
+            List[Tuple[Document, float]]: List of documents most similar to
+            the query text and cosine distance in float for each.
+            Lower score represents more similarity.
+        """
+        results = self.__query_collection(
+            query_embeddings=embedding, n_results=k, where=filter
+        )
+        return _results_to_docs_and_scores(results)
+
+    def similarity_search_with_score(
+        self,
+        query: str,
+        k: int = DEFAULT_K,
+        filter: Optional[Dict[str, str]] = None,
+        **kwargs: Any,
+    ) -> List[Tuple[Document, float]]:
+        """Run similarity search with Chroma with distance.
+
+        Args:
+            query (str): Query text to search for.
+            k (int): Number of results to return. Defaults to 4.
+            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
+
+        Returns:
+            List[Tuple[Document, float]]: List of documents most similar to
+            the query text and cosine distance in float for each.
+            Lower score represents more similarity.
+        """
+        if self._embedding_function is None:
+            results = self.__query_collection(
+                query_texts=[query], n_results=k, where=filter
+            )
+        else:
+            query_embedding = self._embedding_function.embed_query(query)
+            results = self.__query_collection(
+                query_embeddings=[query_embedding], n_results=k, where=filter
+            )
+
+        return _results_to_docs_and_scores(results)
+
+    def _select_relevance_score_fn(self) -> Callable[[float], float]:
+        """
+        The 'correct' relevance function
+        may differ depending on a few things, including:
+        - the distance / similarity metric used by the VectorStore
+        - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
+        - embedding dimensionality
+        - etc.
+        """
+        if self.override_relevance_score_fn:
+            return self.override_relevance_score_fn
+
+        distance = "l2"
+        distance_key = "hnsw:space"
+        metadata = self._collection.metadata
+
+        if metadata and distance_key in metadata:
+            distance = metadata[distance_key]
+
+        if distance == "cosine":
+            return self._cosine_relevance_score_fn
+        elif distance == "l2":
+            return self._euclidean_relevance_score_fn
+        elif distance == "ip":
+            return self._max_inner_product_relevance_score_fn
+        else:
+            raise ValueError(
+                "No supported normalization function"
+                f" for distance metric of type: {distance}."
+                "Consider providing relevance_score_fn to Chroma constructor."
+            )
+
+    def max_marginal_relevance_search_by_vector(
+        self,
+        embedding: List[float],
+        k: int = DEFAULT_K,
+        fetch_k: int = 20,
+        lambda_mult: float = 0.5,
+        filter: Optional[Dict[str, str]] = None,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Return docs selected using the maximal marginal relevance.
+        Maximal marginal relevance optimizes for similarity to query AND diversity
+        among selected documents.
+
+        Args:
+            embedding: Embedding to look up documents similar to.
+            k: Number of Documents to return. Defaults to 4.
+            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
+            lambda_mult: Number between 0 and 1 that determines the degree
+                        of diversity among the results with 0 corresponding
+                        to maximum diversity and 1 to minimum diversity.
+                        Defaults to 0.5.
+            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
+
+        Returns:
+            List of Documents selected by maximal marginal relevance.
+        """
+
+        results = self.__query_collection(
+            query_embeddings=embedding,
+            n_results=fetch_k,
+            where=filter,
+            include=["metadatas", "documents", "distances", "embeddings"],
+        )
+        mmr_selected = maximal_marginal_relevance(
+            np.array(embedding, dtype=np.float32),
+            results["embeddings"][0],
+            k=k,
+            lambda_mult=lambda_mult,
+        )
+
+        candidates = _results_to_docs(results)
+
+        selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
+        return selected_results
+
+    def max_marginal_relevance_search(
+        self,
+        query: str,
+        k: int = DEFAULT_K,
+        fetch_k: int = 20,
+        lambda_mult: float = 0.5,
+        filter: Optional[Dict[str, str]] = None,
+        **kwargs: Any,
+    ) -> List[Document]:
+        """Return docs selected using the maximal marginal relevance.
+        Maximal marginal relevance optimizes for similarity to query AND diversity
+        among selected documents.
+
+        Args:
+            query: Text to look up documents similar to.
+            k: Number of Documents to return. Defaults to 4.
+            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
+            lambda_mult: Number between 0 and 1 that determines the degree
+                        of diversity among the results with 0 corresponding
+                        to maximum diversity and 1 to minimum diversity.
+                        Defaults to 0.5.
+            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
+
+        Returns:
+            List of Documents selected by maximal marginal relevance.
+        """
+        if self._embedding_function is None:
+            raise ValueError(
+                "For MMR search, you must specify an embedding function on" "creation."
+            )
+
+        embedding = self._embedding_function.embed_query(query)
+        docs = self.max_marginal_relevance_search_by_vector(
+            embedding, k, fetch_k, lambda_mult=lambda_mult, filter=filter
+        )
+        return docs
+
+    def delete_collection(self) -> None:
+        """Delete the collection."""
+        self._client.delete_collection(self._collection.name)
+
+    def get(
+        self,
+        ids: Optional[OneOrMany[ID]] = None,
+        where: Optional[Where] = None,
+        limit: Optional[int] = None,
+        offset: Optional[int] = None,
+        where_document: Optional[WhereDocument] = None,
+        include: Optional[List[str]] = None,
+    ) -> Dict[str, Any]:
+        """Gets the collection.
+
+        Args:
+            ids: The ids of the embeddings to get. Optional.
+            where: A Where type dict used to filter results by.
+                   E.g. `{"color" : "red", "price": 4.20}`. Optional.
+            limit: The number of documents to return. Optional.
+            offset: The offset to start returning results from.
+                    Useful for paging results with limit. Optional.
+            where_document: A WhereDocument type dict used to filter by the documents.
+                            E.g. `{$contains: {"text": "hello"}}`. Optional.
+            include: A list of what to include in the results.
+                     Can contain `"embeddings"`, `"metadatas"`, `"documents"`.
+                     Ids are always included.
+                     Defaults to `["metadatas", "documents"]`. Optional.
+        """
+        kwargs = {
+            "ids": ids,
+            "where": where,
+            "limit": limit,
+            "offset": offset,
+            "where_document": where_document,
+        }
+
+        if include is not None:
+            kwargs["include"] = include
+
+        return self._collection.get(**kwargs)
+
+    def persist(self) -> None:
+        """Persist the collection.
+
+        This can be used to explicitly persist the data to disk.
+        It will also be called automatically when the object is destroyed.
+        """
+        if self._persist_directory is None:
+            raise ValueError(
+                "You must specify a persist_directory on"
+                "creation to persist the collection."
+            )
+        import chromadb
+
+        # Maintain backwards compatibility with chromadb < 0.4.0
+        major, minor, _ = chromadb.__version__.split(".")
+        if int(major) == 0 and int(minor) < 4:
+            self._client.persist()
+
+    def update_document(self, document_id: str, document: Document) -> None:
+        """Update a document in the collection.
+
+        Args:
+            document_id (str): ID of the document to update.
+            document (Document): Document to update.
+        """
+        text = document.page_content
+        metadata = document.metadata
+        if self._embedding_function is None:
+            raise ValueError(
+                "For update, you must specify an embedding function on creation."
+            )
+        embeddings = self._embedding_function.embed_documents([text])
+
+        self._collection.update(
+            ids=[document_id],
+            embeddings=embeddings,
+            documents=[text],
+            metadatas=[metadata],
+        )
+
+    @classmethod
+    def from_texts(
+        cls: Type[Chroma],
+        texts: List[str],
+        embedding: Optional[Embeddings] = None,
+        metadatas: Optional[List[dict]] = None,
+        ids: Optional[List[str]] = None,
+        collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
+        persist_directory: Optional[str] = None,
+        client_settings: Optional[chromadb.config.Settings] = None,
+        client: Optional[chromadb.Client] = None,
+        collection_metadata: Optional[Dict] = None,
+        **kwargs: Any,
+    ) -> Chroma:
+        """Create a Chroma vectorstore from a raw documents.
+
+        If a persist_directory is specified, the collection will be persisted there.
+        Otherwise, the data will be ephemeral in-memory.
+
+        Args:
+            texts (List[str]): List of texts to add to the collection.
+            collection_name (str): Name of the collection to create.
+            persist_directory (Optional[str]): Directory to persist the collection.
+            embedding (Optional[Embeddings]): Embedding function. Defaults to None.
+            metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
+            ids (Optional[List[str]]): List of document IDs. Defaults to None.
+            client_settings (Optional[chromadb.config.Settings]): Chroma client settings
+            collection_metadata (Optional[Dict]): Collection configurations.
+                                                  Defaults to None.
+
+        Returns:
+            Chroma: Chroma vectorstore.
+        """
+        chroma_collection = cls(
+            collection_name=collection_name,
+            embedding_function=embedding,
+            persist_directory=persist_directory,
+            client_settings=client_settings,
+            client=client,
+            collection_metadata=collection_metadata,
+            **kwargs,
+        )
+        chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
+        return chroma_collection
+
+    @classmethod
+    def from_documents(
+        cls: Type[Chroma],
+        documents: List[Document],
+        embedding: Optional[Embeddings] = None,
+        ids: Optional[List[str]] = None,
+        collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
+        persist_directory: Optional[str] = None,
+        client_settings: Optional[chromadb.config.Settings] = None,
+        client: Optional[chromadb.Client] = None,  # Add this line
+        collection_metadata: Optional[Dict] = None,
+        **kwargs: Any,
+    ) -> Chroma:
+        """Create a Chroma vectorstore from a list of documents.
+
+        If a persist_directory is specified, the collection will be persisted there.
+        Otherwise, the data will be ephemeral in-memory.
+
+        Args:
+            collection_name (str): Name of the collection to create.
+            persist_directory (Optional[str]): Directory to persist the collection.
+            ids (Optional[List[str]]): List of document IDs. Defaults to None.
+            documents (List[Document]): List of documents to add to the vectorstore.
+            embedding (Optional[Embeddings]): Embedding function. Defaults to None.
+            client_settings (Optional[chromadb.config.Settings]): Chroma client settings
+            collection_metadata (Optional[Dict]): Collection configurations.
+                                                  Defaults to None.
+
+        Returns:
+            Chroma: Chroma vectorstore.
+        """
+        texts = [doc.page_content for doc in documents]
+        metadatas = [doc.metadata for doc in documents]
+        return cls.from_texts(
+            texts=texts,
+            embedding=embedding,
+            metadatas=metadatas,
+            ids=ids,
+            collection_name=collection_name,
+            persist_directory=persist_directory,
+            client_settings=client_settings,
+            client=client,
+            collection_metadata=collection_metadata,
+            **kwargs,
+        )
+
+    def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
+        """Delete by vector IDs.
+
+        Args:
+            ids: List of ids to delete.
+        """
+        self._collection.delete(ids=ids)
\ No newline at end of file
diff --git a/swarms/prompts/__init__.py b/swarms/agents/prompts/__init__.py
similarity index 100%
rename from swarms/prompts/__init__.py
rename to swarms/agents/prompts/__init__.py
diff --git a/swarms/prompts/prompts.py b/swarms/agents/prompts/prompts.py
similarity index 100%
rename from swarms/prompts/prompts.py
rename to swarms/agents/prompts/prompts.py
diff --git a/swarms/tools/README.md b/swarms/agents/tools/README.md
similarity index 100%
rename from swarms/tools/README.md
rename to swarms/agents/tools/README.md
diff --git a/swarms/tools/__init__.py b/swarms/agents/tools/__init__.py
similarity index 100%
rename from swarms/tools/__init__.py
rename to swarms/agents/tools/__init__.py
diff --git a/swarms/tools/agent_tools.py b/swarms/agents/tools/agent_tools.py
similarity index 100%
rename from swarms/tools/agent_tools.py
rename to swarms/agents/tools/agent_tools.py
diff --git a/swarms/agents/tools/core/__init__.py b/swarms/agents/tools/core/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/swarms/agents/tools/core/code_interpreter/__init__.py b/swarms/agents/tools/core/code_interpreter/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/swarms/tools/core/code_interpreter/main.py b/swarms/agents/tools/core/code_interpreter/main.py
similarity index 100%
rename from swarms/tools/core/code_interpreter/main.py
rename to swarms/agents/tools/core/code_interpreter/main.py
diff --git a/swarms/tools/main.py b/swarms/agents/tools/main.py
similarity index 100%
rename from swarms/tools/main.py
rename to swarms/agents/tools/main.py
diff --git a/swarms/agents/utils/Agent.py b/swarms/agents/utils/Agent.py
index e6e6871a..f11f0520 100644
--- a/swarms/agents/utils/Agent.py
+++ b/swarms/agents/utils/Agent.py
@@ -615,3 +615,8 @@ class ExceptionTool(BaseTool):
         run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
     ) -> str:
         return query
+
+
+
+
+