From d8d2c62567fd8d64950648642a8e332fbba47498 Mon Sep 17 00:00:00 2001 From: Your Name Date: Sat, 12 Oct 2024 23:37:25 -0400 Subject: [PATCH] [EXAMPLES CLEANUP] --- README.md | 265 ++++++++++++++++++++++++++++ docs/swarms/structs/swarm_router.md | 2 +- 2 files changed, 266 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index ef74cd51..8aa2521c 100644 --- a/README.md +++ b/README.md @@ -1342,6 +1342,271 @@ print(output) ``` + + + +## `SwarmRouter` +The `SwarmRouter` class is a flexible routing system designed to manage different types of swarms for task execution. It provides a unified interface to interact with various swarm types, including `AgentRearrange`, `MixtureOfAgents`, `SpreadSheetSwarm`, `SequentialWorkflow`, and `ConcurrentWorkflow`. We will be continously adding more and more swarm architectures here as we progress with new architectures. + +#### Attributes: +- `name` (str): Name of the SwarmRouter instance. +- `description` (str): Description of the SwarmRouter instance. +- `max_loops` (int): Maximum number of loops to perform. +- `agents` (List[Agent]): List of Agent objects to be used in the swarm. +- `swarm_type` (SwarmType): Type of swarm to be used. +- `swarm` (Union[AgentRearrange, MixtureOfAgents, SpreadSheetSwarm, SequentialWorkflow, ConcurrentWorkflow]): Instantiated swarm object. +- `logs` (List[SwarmLog]): List of log entries captured during operations. + +#### Methods: +- `__init__(self, name: str, description: str, max_loops: int, agents: List[Agent], swarm_type: SwarmType, *args, **kwargs)`: Initialize the SwarmRouter. +- `_create_swarm(self, *args, **kwargs)`: Create and return the specified swarm type. +- `_log(self, level: str, message: str, task: str, metadata: Dict[str, Any])`: Create a log entry and add it to the logs list. +- `run(self, task: str, *args, **kwargs)`: Run the specified task on the selected swarm. +- `get_logs(self)`: Retrieve all logged entries. + + +```python +import os +from dotenv import load_dotenv +from swarms import Agent +from swarm_models import OpenAIChat +from swarms.structs.swarm_router import SwarmRouter, SwarmType + +load_dotenv() + +# Get the OpenAI API key from the environment variable +api_key = os.getenv("GROQ_API_KEY") + +# Model +model = OpenAIChat( + openai_api_base="https://api.groq.com/openai/v1", + openai_api_key=api_key, + model_name="llama-3.1-70b-versatile", + temperature=0.1, +) +# Define specialized system prompts for each agent +DATA_EXTRACTOR_PROMPT = """You are a highly specialized private equity agent focused on data extraction from various documents. Your expertise includes: +1. Extracting key financial metrics (revenue, EBITDA, growth rates, etc.) from financial statements and reports +2. Identifying and extracting important contract terms from legal documents +3. Pulling out relevant market data from industry reports and analyses +4. Extracting operational KPIs from management presentations and internal reports +5. Identifying and extracting key personnel information from organizational charts and bios +Provide accurate, structured data extracted from various document types to support investment analysis.""" + +SUMMARIZER_PROMPT = """You are an expert private equity agent specializing in summarizing complex documents. Your core competencies include: +1. Distilling lengthy financial reports into concise executive summaries +2. Summarizing legal documents, highlighting key terms and potential risks +3. Condensing industry reports to capture essential market trends and competitive dynamics +4. Summarizing management presentations to highlight key strategic initiatives and projections +5. Creating brief overviews of technical documents, emphasizing critical points for non-technical stakeholders +Deliver clear, concise summaries that capture the essence of various documents while highlighting information crucial for investment decisions.""" + +FINANCIAL_ANALYST_PROMPT = """You are a specialized private equity agent focused on financial analysis. Your key responsibilities include: +1. Analyzing historical financial statements to identify trends and potential issues +2. Evaluating the quality of earnings and potential adjustments to EBITDA +3. Assessing working capital requirements and cash flow dynamics +4. Analyzing capital structure and debt capacity +5. Evaluating financial projections and underlying assumptions +Provide thorough, insightful financial analysis to inform investment decisions and valuation.""" + +MARKET_ANALYST_PROMPT = """You are a highly skilled private equity agent specializing in market analysis. Your expertise covers: +1. Analyzing industry trends, growth drivers, and potential disruptors +2. Evaluating competitive landscape and market positioning +3. Assessing market size, segmentation, and growth potential +4. Analyzing customer dynamics, including concentration and loyalty +5. Identifying potential regulatory or macroeconomic impacts on the market +Deliver comprehensive market analysis to assess the attractiveness and risks of potential investments.""" + +OPERATIONAL_ANALYST_PROMPT = """You are an expert private equity agent focused on operational analysis. Your core competencies include: +1. Evaluating operational efficiency and identifying improvement opportunities +2. Analyzing supply chain and procurement processes +3. Assessing sales and marketing effectiveness +4. Evaluating IT systems and digital capabilities +5. Identifying potential synergies in merger or add-on acquisition scenarios +Provide detailed operational analysis to uncover value creation opportunities and potential risks.""" + +# Initialize specialized agents +data_extractor_agent = Agent( + agent_name="Data-Extractor", + system_prompt=DATA_EXTRACTOR_PROMPT, + llm=model, + max_loops=1, + autosave=True, + verbose=True, + dynamic_temperature_enabled=True, + saved_state_path="data_extractor_agent.json", + user_name="pe_firm", + retry_attempts=1, + context_length=200000, + output_type="string", +) + +summarizer_agent = Agent( + agent_name="Document-Summarizer", + system_prompt=SUMMARIZER_PROMPT, + llm=model, + max_loops=1, + autosave=True, + verbose=True, + dynamic_temperature_enabled=True, + saved_state_path="summarizer_agent.json", + user_name="pe_firm", + retry_attempts=1, + context_length=200000, + output_type="string", +) + +financial_analyst_agent = Agent( + agent_name="Financial-Analyst", + system_prompt=FINANCIAL_ANALYST_PROMPT, + llm=model, + max_loops=1, + autosave=True, + verbose=True, + dynamic_temperature_enabled=True, + saved_state_path="financial_analyst_agent.json", + user_name="pe_firm", + retry_attempts=1, + context_length=200000, + output_type="string", +) + +market_analyst_agent = Agent( + agent_name="Market-Analyst", + system_prompt=MARKET_ANALYST_PROMPT, + llm=model, + max_loops=1, + autosave=True, + verbose=True, + dynamic_temperature_enabled=True, + saved_state_path="market_analyst_agent.json", + user_name="pe_firm", + retry_attempts=1, + context_length=200000, + output_type="string", +) + +operational_analyst_agent = Agent( + agent_name="Operational-Analyst", + system_prompt=OPERATIONAL_ANALYST_PROMPT, + llm=model, + max_loops=1, + autosave=True, + verbose=True, + dynamic_temperature_enabled=True, + saved_state_path="operational_analyst_agent.json", + user_name="pe_firm", + retry_attempts=1, + context_length=200000, + output_type="string", +) + +# Initialize the SwarmRouter +router = SwarmRouter( + name="pe-document-analysis-swarm", + description="Analyze documents for private equity due diligence and investment decision-making", + max_loops=1, + agents=[ + data_extractor_agent, + summarizer_agent, + financial_analyst_agent, + market_analyst_agent, + operational_analyst_agent, + ], + swarm_type="ConcurrentWorkflow", # or "SequentialWorkflow" or "ConcurrentWorkflow" or +) + +# Example usage +if __name__ == "__main__": + # Run a comprehensive private equity document analysis task + result = router.run( + "Where is the best place to find template term sheets for series A startups. Provide links and references" + ) + print(result) + + # Retrieve and print logs + for log in router.get_logs(): + print(f"{log.timestamp} - {log.level}: {log.message}") + +``` + +### Changing Swarm Types + +You can create multiple SwarmRouter instances with different swarm types: + +```python +sequential_router = SwarmRouter( + name="SequentialRouter", + agents=[ + data_extractor_agent, + summarizer_agent, + financial_analyst_agent, + market_analyst_agent, + operational_analyst_agent, + ], + swarm_type=SwarmType.SequentialWorkflow +) + +concurrent_router = SwarmRouter( + name="ConcurrentRouter", + agents=[ + data_extractor_agent, + summarizer_agent, + financial_analyst_agent, + market_analyst_agent, + operational_analyst_agent, + ], + swarm_type=SwarmType.ConcurrentWorkflow +) +``` + +### AgentRearrange + +Use Case: Optimizing agent order for complex multi-step tasks. + +```python +rearrange_router = SwarmRouter( + name="TaskOptimizer", + description="Optimize agent order for multi-step tasks", + max_loops=3, + agents=[ + data_extractor_agent, + summarizer_agent, + financial_analyst_agent, + market_analyst_agent, + operational_analyst_agent, + ], + swarm_type=SwarmType.AgentRearrange, + flow = f"{data_extractor.name} -> {analyzer.name} -> {summarizer.name}" +) + +result = rearrange_router.run("Analyze and summarize the quarterly financial report") +``` + +### MixtureOfAgents + +Use Case: Combining diverse expert agents for comprehensive analysis. + +```python +mixture_router = SwarmRouter( + name="ExpertPanel", + description="Combine insights from various expert agents", + max_loops=1, + agents=[ + data_extractor_agent, + summarizer_agent, + financial_analyst_agent, + market_analyst_agent, + operational_analyst_agent, + ], + swarm_type=SwarmType.MixtureOfAgents +) + +result = mixture_router.run("Evaluate the potential acquisition of TechStartup Inc.") +``` + + + ---------- ## Onboarding Session diff --git a/docs/swarms/structs/swarm_router.md b/docs/swarms/structs/swarm_router.md index 34a022b8..ac0f2e7d 100644 --- a/docs/swarms/structs/swarm_router.md +++ b/docs/swarms/structs/swarm_router.md @@ -51,7 +51,7 @@ pip install swarms swarm_models ```python import os from dotenv import load_dotenv -from swarms import Agent, SwarmRouter +from swarms import Agent, SwarmRouter, SwarmType from swarm_models import OpenAIChat load_dotenv()