From e08d96b5ccbc93f2fee3f56d79f59f7f892fa900 Mon Sep 17 00:00:00 2001 From: Kye Gomez <98760976+kyegomez@users.noreply.github.com> Date: Thu, 11 Jul 2024 10:31:16 -0700 Subject: [PATCH] Update README.md --- README.md | 15 ++++++--------- 1 file changed, 6 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index d1b604b4..f8b21e75 100644 --- a/README.md +++ b/README.md @@ -125,6 +125,7 @@ agent.run( ``` +----- ### `Agent` + Long Term Memory `Agent` equipped with quasi-infinite long term memory. Great for long document understanding, analysis, and retrieval. @@ -171,7 +172,7 @@ agent.run("Generate a 10,000 word blog on health and wellness.") ``` - +----- ### `Agent` ++ Long Term Memory ++ Tools! An LLM equipped with long term memory and tools, a full stack agent capable of automating all and any digital tasks given a good prompt. @@ -284,7 +285,7 @@ out = agent("Create a new file for a plan to take over the world.") print(out) ``` - +---- ### Devin Implementation of Devin in less than 90 lines of code with several tools: @@ -390,7 +391,7 @@ agent = Agent( out = agent("Create a new file for a plan to take over the world.") print(out) ``` - +--------------- ### `Agent`with Pydantic BaseModel as Output Type The following is an example of an agent that intakes a pydantic basemodel and outputs it at the same time: @@ -453,6 +454,7 @@ print(f"Generated data: {generated_data}") ``` +----- ### Multi Modal Autonomous Agent Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health. @@ -553,7 +555,7 @@ generated_data = agent.run(task) print(f"Generated data: {generated_data}") ``` - +---------------- ### `Task` For deeper control of your agent stack, `Task` is a simple structure for task execution with the `Agent`. Imagine zapier like LLM-based workflow automation. @@ -759,11 +761,6 @@ print(output) ## `HierarhicalSwarm` Coming soon... - -## `AgentLoadBalancer` -Coming soon... - - ## `GraphSwarm` Coming soon...