pull/712/head
Kye Gomez 1 week ago
parent 79e7d20d4f
commit e5b1a0a483

@ -272,5 +272,7 @@ nav:
- Culture: "corporate/culture.md"
- Hiring: "corporate/hiring.md"
- Swarms Goals & Milestone Tracking; A Vision for 2024 and Beyond: "corporate/2024_2025_goals.md"
- Examples:
- Unique Swarms: "examples/unique_swarms.md"
# - Clusterops:
# - Overview: "clusterops/reference.md"

@ -0,0 +1,297 @@
## Unique Swarm Examples
In this section, we present a diverse collection of unique swarms, each with its own distinct characteristics and applications. These examples are designed to illustrate the versatility and potential of swarm intelligence in various domains. By exploring these examples, you can gain a deeper understanding of how swarms can be leveraged to solve complex problems and improve decision-making processes.
```python
import asyncio
from typing import List
from swarms.structs.agent import Agent
from swarms.structs.swarming_architectures import (
broadcast,
circular_swarm,
exponential_swarm,
fibonacci_swarm,
grid_swarm,
linear_swarm,
mesh_swarm,
one_to_three,
prime_swarm,
sigmoid_swarm,
sinusoidal_swarm,
staircase_swarm,
star_swarm,
)
def create_finance_agents() -> List[Agent]:
"""Create specialized finance agents"""
return [
Agent(
agent_name="MarketAnalyst",
system_prompt="You are a market analysis expert. Analyze market trends and provide insights.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="RiskManager",
system_prompt="You are a risk management specialist. Evaluate risks and provide mitigation strategies.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="PortfolioManager",
system_prompt="You are a portfolio management expert. Optimize investment portfolios and asset allocation.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="ComplianceOfficer",
system_prompt="You are a financial compliance expert. Ensure regulatory compliance and identify issues.",
model_name="gpt-4o-mini"
)
]
def create_healthcare_agents() -> List[Agent]:
"""Create specialized healthcare agents"""
return [
Agent(
agent_name="Diagnostician",
system_prompt="You are a medical diagnostician. Analyze symptoms and suggest potential diagnoses.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="Treatment_Planner",
system_prompt="You are a treatment planning specialist. Develop comprehensive treatment plans.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="MedicalResearcher",
system_prompt="You are a medical researcher. Analyze latest research and provide evidence-based recommendations.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="PatientCareCoordinator",
system_prompt="You are a patient care coordinator. Manage patient care workflow and coordination.",
model_name="gpt-4o-mini"
)
]
def print_separator():
print("\n" + "="*50 + "\n")
def run_finance_circular_swarm():
"""Investment analysis workflow using circular swarm"""
print_separator()
print("FINANCE - INVESTMENT ANALYSIS (Circular Swarm)")
agents = create_finance_agents()
tasks = [
"Analyze Tesla stock performance for Q4 2024",
"Assess market risks and potential hedging strategies",
"Recommend portfolio adjustments based on analysis"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = circular_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_healthcare_grid_swarm():
"""Patient diagnosis and treatment planning using grid swarm"""
print_separator()
print("HEALTHCARE - PATIENT DIAGNOSIS (Grid Swarm)")
agents = create_healthcare_agents()
tasks = [
"Review patient symptoms: fever, fatigue, joint pain",
"Research latest treatment protocols",
"Develop preliminary treatment plan",
"Coordinate with specialists"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = grid_swarm(agents, tasks)
print("\nGrid swarm processing completed")
print(result)
def run_finance_linear_swarm():
"""Loan approval process using linear swarm"""
print_separator()
print("FINANCE - LOAN APPROVAL PROCESS (Linear Swarm)")
agents = create_finance_agents()[:3]
tasks = [
"Review loan application and credit history",
"Assess risk factors and compliance requirements",
"Generate final loan recommendation"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = linear_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_healthcare_star_swarm():
"""Complex medical case management using star swarm"""
print_separator()
print("HEALTHCARE - COMPLEX CASE MANAGEMENT (Star Swarm)")
agents = create_healthcare_agents()
tasks = [
"Complex case: Patient with multiple chronic conditions",
"Develop integrated care plan"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = star_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_finance_mesh_swarm():
"""Market risk assessment using mesh swarm"""
print_separator()
print("FINANCE - MARKET RISK ASSESSMENT (Mesh Swarm)")
agents = create_finance_agents()
tasks = [
"Analyze global market conditions",
"Assess currency exchange risks",
"Evaluate sector-specific risks",
"Review portfolio exposure"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = mesh_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_mathematical_finance_swarms():
"""Complex financial analysis using mathematical swarms"""
print_separator()
print("FINANCE - MARKET PATTERN ANALYSIS")
agents = create_finance_agents()
tasks = [
"Analyze historical market patterns",
"Predict market trends using technical analysis",
"Identify potential arbitrage opportunities"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
print("\nFibonacci Swarm Results:")
result = fibonacci_swarm(agents, tasks.copy())
print(result)
print("\nPrime Swarm Results:")
result = prime_swarm(agents, tasks.copy())
print(result)
print("\nExponential Swarm Results:")
result = exponential_swarm(agents, tasks.copy())
print(result)
def run_healthcare_pattern_swarms():
"""Patient monitoring using pattern swarms"""
print_separator()
print("HEALTHCARE - PATIENT MONITORING PATTERNS")
agents = create_healthcare_agents()
task = "Monitor and analyze patient vital signs: BP, heart rate, temperature, O2 saturation"
print(f"\nTask: {task}")
print("\nStaircase Pattern Analysis:")
result = staircase_swarm(agents, task)
print(result)
print("\nSigmoid Pattern Analysis:")
result = sigmoid_swarm(agents, task)
print(result)
print("\nSinusoidal Pattern Analysis:")
result = sinusoidal_swarm(agents, task)
print(result)
async def run_communication_examples():
"""Communication patterns for emergency scenarios"""
print_separator()
print("EMERGENCY COMMUNICATION PATTERNS")
# Finance market alert
finance_sender = create_finance_agents()[0]
finance_receivers = create_finance_agents()[1:]
market_alert = "URGENT: Major market volatility detected - immediate risk assessment required"
print("\nFinance Market Alert:")
print(f"Alert: {market_alert}")
result = await broadcast(finance_sender, finance_receivers, market_alert)
print("\nBroadcast Results:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Response: {log['response']}")
# Healthcare emergency
health_sender = create_healthcare_agents()[0]
health_receivers = create_healthcare_agents()[1:4]
emergency_case = "EMERGENCY: Trauma patient with multiple injuries - immediate consultation required"
print("\nHealthcare Emergency:")
print(f"Case: {emergency_case}")
result = await one_to_three(health_sender, health_receivers, emergency_case)
print("\nConsultation Results:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Response: {log['response']}")
async def run_all_examples():
"""Execute all swarm examples"""
print("\n=== SWARM ARCHITECTURE EXAMPLES ===\n")
# Finance examples
run_finance_circular_swarm()
run_finance_linear_swarm()
run_finance_mesh_swarm()
run_mathematical_finance_swarms()
# Healthcare examples
run_healthcare_grid_swarm()
run_healthcare_star_swarm()
run_healthcare_pattern_swarms()
# Communication examples
await run_communication_examples()
print("\n=== ALL EXAMPLES COMPLETED ===")
if __name__ == "__main__":
asyncio.run(run_all_examples())
```

@ -1,328 +0,0 @@
import os
import traceback
from datetime import datetime
from typing import Callable, Dict, List, Optional
from loguru import logger
from swarm_models import OpenAIChat
from swarms.structs.agent import Agent
from swarms.structs.rearrange import AgentRearrange
class TestResult:
"""Class to store test results and metadata"""
def __init__(self, test_name: str):
self.test_name = test_name
self.start_time = datetime.now()
self.end_time = None
self.success = False
self.error = None
self.traceback = None
self.function_output = None
def complete(
self, success: bool, error: Optional[Exception] = None
):
"""Complete the test execution with results"""
self.end_time = datetime.now()
self.success = success
if error:
self.error = str(error)
self.traceback = traceback.format_exc()
def duration(self) -> float:
"""Calculate test duration in seconds"""
if self.end_time:
return (self.end_time - self.start_time).total_seconds()
return 0
def run_test(test_func: Callable) -> TestResult:
"""
Decorator to run tests with error handling and logging
Args:
test_func (Callable): Test function to execute
Returns:
TestResult: Object containing test execution details
"""
def wrapper(*args, **kwargs) -> TestResult:
result = TestResult(test_func.__name__)
logger.info(
f"\n{'='*20} Running test: {test_func.__name__} {'='*20}"
)
try:
output = test_func(*args, **kwargs)
result.function_output = output
result.complete(success=True)
logger.success(
f"✅ Test {test_func.__name__} passed successfully"
)
except Exception as e:
result.complete(success=False, error=e)
logger.error(
f"❌ Test {test_func.__name__} failed with error: {str(e)}"
)
logger.error(f"Traceback: {traceback.format_exc()}")
logger.info(
f"Test duration: {result.duration():.2f} seconds\n"
)
return result
return wrapper
def create_functional_agents() -> List[Agent]:
"""
Create a list of functional agents with real LLM integration for testing.
Using OpenAI's GPT model for realistic agent behavior testing.
"""
# Initialize OpenAI Chat model
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
logger.warning(
"No OpenAI API key found. Using mock agents instead."
)
return [
create_mock_agent("TestAgent1"),
create_mock_agent("TestAgent2"),
]
try:
model = OpenAIChat(
api_key=api_key, model_name="gpt-4o", temperature=0.1
)
# Create boss agent
boss_agent = Agent(
agent_name="BossAgent",
system_prompt="""
You are the BossAgent responsible for managing and overseeing test scenarios.
Your role is to coordinate tasks between agents and ensure efficient collaboration.
Analyze inputs, break down tasks, and provide clear directives to other agents.
Maintain a structured approach to task management and result compilation.
""",
llm=model,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
state_save_file_type="json",
saved_state_path="test_boss_agent.json",
)
# Create analysis agent
analysis_agent = Agent(
agent_name="AnalysisAgent",
system_prompt="""
You are the AnalysisAgent responsible for detailed data processing and analysis.
Your role is to examine input data, identify patterns, and provide analytical insights.
Focus on breaking down complex information into clear, actionable components.
""",
llm=model,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
state_save_file_type="json",
saved_state_path="test_analysis_agent.json",
)
# Create summary agent
summary_agent = Agent(
agent_name="SummaryAgent",
system_prompt="""
You are the SummaryAgent responsible for consolidating and summarizing information.
Your role is to take detailed analysis and create concise, actionable summaries.
Focus on highlighting key points and ensuring clarity in communication.
""",
llm=model,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
state_save_file_type="json",
saved_state_path="test_summary_agent.json",
)
logger.info(
"Successfully created functional agents with LLM integration"
)
return [boss_agent, analysis_agent, summary_agent]
except Exception as e:
logger.error(f"Failed to create functional agents: {str(e)}")
logger.warning("Falling back to mock agents")
return [
create_mock_agent("TestAgent1"),
create_mock_agent("TestAgent2"),
]
def create_mock_agent(name: str) -> Agent:
"""Create a mock agent for testing when LLM integration is not available"""
return Agent(
agent_name=name,
system_prompt=f"You are a test agent named {name}",
llm=None,
)
@run_test
def test_init():
"""Test AgentRearrange initialization with functional agents"""
logger.info("Creating agents for initialization test")
agents = create_functional_agents()
rearrange = AgentRearrange(
name="TestRearrange",
agents=agents,
flow=f"{agents[0].agent_name} -> {agents[1].agent_name} -> {agents[2].agent_name}",
)
assert rearrange.name == "TestRearrange"
assert len(rearrange.agents) == 3
assert (
rearrange.flow
== f"{agents[0].agent_name} -> {agents[1].agent_name} -> {agents[2].agent_name}"
)
logger.info(
f"Initialized AgentRearrange with {len(agents)} agents"
)
return True
@run_test
def test_validate_flow():
"""Test flow validation logic"""
agents = create_functional_agents()
rearrange = AgentRearrange(
agents=agents,
flow=f"{agents[0].agent_name} -> {agents[1].agent_name}",
)
logger.info("Testing valid flow pattern")
valid = rearrange.validate_flow()
assert valid is True
logger.info("Testing invalid flow pattern")
rearrange.flow = f"{agents[0].agent_name} {agents[1].agent_name}" # Missing arrow
try:
rearrange.validate_flow()
assert False, "Should have raised ValueError"
except ValueError as e:
logger.info(
f"Successfully caught invalid flow error: {str(e)}"
)
assert True
return True
@run_test
def test_add_remove_agent():
"""Test adding and removing agents from the swarm"""
agents = create_functional_agents()
rearrange = AgentRearrange(
agents=agents[:2]
) # Start with first two agents
logger.info("Testing agent addition")
new_agent = agents[2] # Use the third agent as new agent
rearrange.add_agent(new_agent)
assert new_agent.agent_name in rearrange.agents
logger.info("Testing agent removal")
rearrange.remove_agent(new_agent.agent_name)
assert new_agent.agent_name not in rearrange.agents
return True
@run_test
def test_basic_run():
"""Test basic task execution with the swarm"""
agents = create_functional_agents()
rearrange = AgentRearrange(
name="TestSwarm",
agents=agents,
flow=f"{agents[0].agent_name} -> {agents[1].agent_name} -> {agents[2].agent_name}",
max_loops=1,
)
test_task = (
"Analyze this test message and provide a brief summary."
)
logger.info(f"Running test task: {test_task}")
try:
result = rearrange.run(test_task)
assert result is not None
logger.info(
f"Successfully executed task with result length: {len(str(result))}"
)
return True
except Exception as e:
logger.error(f"Task execution failed: {str(e)}")
raise
def run_all_tests() -> Dict[str, TestResult]:
"""
Run all test cases and collect results
Returns:
Dict[str, TestResult]: Dictionary mapping test names to their results
"""
logger.info("\n🚀 Starting AgentRearrange test suite execution")
test_functions = [
test_init,
test_validate_flow,
test_add_remove_agent,
test_basic_run,
]
results = {}
for test in test_functions:
result = test()
results[test.__name__] = result
# Log summary
total_tests = len(results)
passed_tests = sum(1 for r in results.values() if r.success)
failed_tests = total_tests - passed_tests
logger.info("\n📊 Test Suite Summary:")
logger.info(f"Total Tests: {total_tests}")
print(f"✅ Passed: {passed_tests}")
if failed_tests > 0:
logger.error(f"❌ Failed: {failed_tests}")
# Detailed failure information
if failed_tests > 0:
logger.error("\n❌ Failed Tests Details:")
for name, result in results.items():
if not result.success:
logger.error(f"\n{name}:")
logger.error(f"Error: {result.error}")
logger.error(f"Traceback: {result.traceback}")
return results
if __name__ == "__main__":
print("🌟 Starting AgentRearrange Test Suite")
results = run_all_tests()
print("🏁 Test Suite Execution Completed")

@ -0,0 +1,290 @@
import asyncio
from typing import List
from swarms.structs.agent import Agent
from swarms.structs.swarming_architectures import (
broadcast,
circular_swarm,
exponential_swarm,
fibonacci_swarm,
grid_swarm,
linear_swarm,
mesh_swarm,
one_to_three,
prime_swarm,
sigmoid_swarm,
sinusoidal_swarm,
staircase_swarm,
star_swarm,
)
def create_finance_agents() -> List[Agent]:
"""Create specialized finance agents"""
return [
Agent(
agent_name="MarketAnalyst",
system_prompt="You are a market analysis expert. Analyze market trends and provide insights.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="RiskManager",
system_prompt="You are a risk management specialist. Evaluate risks and provide mitigation strategies.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="PortfolioManager",
system_prompt="You are a portfolio management expert. Optimize investment portfolios and asset allocation.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="ComplianceOfficer",
system_prompt="You are a financial compliance expert. Ensure regulatory compliance and identify issues.",
model_name="gpt-4o-mini"
)
]
def create_healthcare_agents() -> List[Agent]:
"""Create specialized healthcare agents"""
return [
Agent(
agent_name="Diagnostician",
system_prompt="You are a medical diagnostician. Analyze symptoms and suggest potential diagnoses.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="Treatment_Planner",
system_prompt="You are a treatment planning specialist. Develop comprehensive treatment plans.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="MedicalResearcher",
system_prompt="You are a medical researcher. Analyze latest research and provide evidence-based recommendations.",
model_name="gpt-4o-mini"
),
Agent(
agent_name="PatientCareCoordinator",
system_prompt="You are a patient care coordinator. Manage patient care workflow and coordination.",
model_name="gpt-4o-mini"
)
]
def print_separator():
print("\n" + "="*50 + "\n")
def run_finance_circular_swarm():
"""Investment analysis workflow using circular swarm"""
print_separator()
print("FINANCE - INVESTMENT ANALYSIS (Circular Swarm)")
agents = create_finance_agents()
tasks = [
"Analyze Tesla stock performance for Q4 2024",
"Assess market risks and potential hedging strategies",
"Recommend portfolio adjustments based on analysis"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = circular_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_healthcare_grid_swarm():
"""Patient diagnosis and treatment planning using grid swarm"""
print_separator()
print("HEALTHCARE - PATIENT DIAGNOSIS (Grid Swarm)")
agents = create_healthcare_agents()
tasks = [
"Review patient symptoms: fever, fatigue, joint pain",
"Research latest treatment protocols",
"Develop preliminary treatment plan",
"Coordinate with specialists"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = grid_swarm(agents, tasks)
print("\nGrid swarm processing completed")
print(result)
def run_finance_linear_swarm():
"""Loan approval process using linear swarm"""
print_separator()
print("FINANCE - LOAN APPROVAL PROCESS (Linear Swarm)")
agents = create_finance_agents()[:3]
tasks = [
"Review loan application and credit history",
"Assess risk factors and compliance requirements",
"Generate final loan recommendation"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = linear_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_healthcare_star_swarm():
"""Complex medical case management using star swarm"""
print_separator()
print("HEALTHCARE - COMPLEX CASE MANAGEMENT (Star Swarm)")
agents = create_healthcare_agents()
tasks = [
"Complex case: Patient with multiple chronic conditions",
"Develop integrated care plan"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = star_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_finance_mesh_swarm():
"""Market risk assessment using mesh swarm"""
print_separator()
print("FINANCE - MARKET RISK ASSESSMENT (Mesh Swarm)")
agents = create_finance_agents()
tasks = [
"Analyze global market conditions",
"Assess currency exchange risks",
"Evaluate sector-specific risks",
"Review portfolio exposure"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
result = mesh_swarm(agents, tasks)
print("\nResults:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Task: {log['task']}")
print(f"Response: {log['response']}")
def run_mathematical_finance_swarms():
"""Complex financial analysis using mathematical swarms"""
print_separator()
print("FINANCE - MARKET PATTERN ANALYSIS")
agents = create_finance_agents()
tasks = [
"Analyze historical market patterns",
"Predict market trends using technical analysis",
"Identify potential arbitrage opportunities"
]
print("\nTasks:")
for i, task in enumerate(tasks, 1):
print(f"{i}. {task}")
print("\nFibonacci Swarm Results:")
result = fibonacci_swarm(agents, tasks.copy())
print(result)
print("\nPrime Swarm Results:")
result = prime_swarm(agents, tasks.copy())
print(result)
print("\nExponential Swarm Results:")
result = exponential_swarm(agents, tasks.copy())
print(result)
def run_healthcare_pattern_swarms():
"""Patient monitoring using pattern swarms"""
print_separator()
print("HEALTHCARE - PATIENT MONITORING PATTERNS")
agents = create_healthcare_agents()
task = "Monitor and analyze patient vital signs: BP, heart rate, temperature, O2 saturation"
print(f"\nTask: {task}")
print("\nStaircase Pattern Analysis:")
result = staircase_swarm(agents, task)
print(result)
print("\nSigmoid Pattern Analysis:")
result = sigmoid_swarm(agents, task)
print(result)
print("\nSinusoidal Pattern Analysis:")
result = sinusoidal_swarm(agents, task)
print(result)
async def run_communication_examples():
"""Communication patterns for emergency scenarios"""
print_separator()
print("EMERGENCY COMMUNICATION PATTERNS")
# Finance market alert
finance_sender = create_finance_agents()[0]
finance_receivers = create_finance_agents()[1:]
market_alert = "URGENT: Major market volatility detected - immediate risk assessment required"
print("\nFinance Market Alert:")
print(f"Alert: {market_alert}")
result = await broadcast(finance_sender, finance_receivers, market_alert)
print("\nBroadcast Results:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Response: {log['response']}")
# Healthcare emergency
health_sender = create_healthcare_agents()[0]
health_receivers = create_healthcare_agents()[1:4]
emergency_case = "EMERGENCY: Trauma patient with multiple injuries - immediate consultation required"
print("\nHealthcare Emergency:")
print(f"Case: {emergency_case}")
result = await one_to_three(health_sender, health_receivers, emergency_case)
print("\nConsultation Results:")
for log in result['history']:
print(f"\n{log['agent_name']}:")
print(f"Response: {log['response']}")
async def run_all_examples():
"""Execute all swarm examples"""
print("\n=== SWARM ARCHITECTURE EXAMPLES ===\n")
# Finance examples
run_finance_circular_swarm()
run_finance_linear_swarm()
run_finance_mesh_swarm()
run_mathematical_finance_swarms()
# Healthcare examples
run_healthcare_grid_swarm()
run_healthcare_star_swarm()
run_healthcare_pattern_swarms()
# Communication examples
await run_communication_examples()
print("\n=== ALL EXAMPLES COMPLETED ===")
if __name__ == "__main__":
asyncio.run(run_all_examples())
Loading…
Cancel
Save