diff --git a/README.md b/README.md index e878afb7..5aff48a7 100644 --- a/README.md +++ b/README.md @@ -130,7 +130,7 @@ Run example in Collab: B[Receive Task] + B --> C[Query Long-Term Memory] + C --> D[Process Task with Context] + D --> E[Generate Response] + E --> F[Update Long-Term Memory] + F --> G[Return Output] +``` +**Step 1: Initialize the ChromaDB Client** ```python import os from swarms_memory import ChromaDB -from swarms import Agent +# Initialize the ChromaDB client for long-term memory management +chromadb = ChromaDB( + metric="cosine", # Metric for similarity measurement + output_dir="finance_agent_rag", # Directory for storing RAG data + # docs_folder="artifacts", # Uncomment and specify the folder containing your documents +) +``` + +**Step 2: Define the Model** +```python from swarm_models import Anthropic from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) -# Initilaize the chromadb client -chromadb = ChromaDB( - metric="cosine", - output_dir="fiance_agent_rag", - # docs_folder="artifacts", # Folder of your documents -) - -# Model +# Define the Anthropic model for language processing model = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY")) +``` +**Step 3: Initialize the Agent with RAG** +```python +from swarms import Agent -# Initialize the agent +# Initialize the agent with RAG capabilities agent = Agent( agent_name="Financial-Analysis-Agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT, - agent_description="Agent creates ", + agent_description="Agent creates a comprehensive financial analysis", llm=model, - max_loops="auto", - autosave=True, - dashboard=False, - verbose=True, - streaming_on=True, - dynamic_temperature_enabled=True, - saved_state_path="finance_agent.json", - user_name="swarms_corp", - retry_attempts=3, - context_length=200000, - long_term_memory=chromadb, + max_loops="auto", # Auto-adjusts loops based on task complexity + autosave=True, # Automatically saves agent state + dashboard=False, # Disables dashboard for this example + verbose=True, # Enables verbose mode for detailed output + streaming_on=True, # Enables streaming for real-time processing + dynamic_temperature_enabled=True, # Dynamically adjusts temperature for optimal performance + saved_state_path="finance_agent.json", # Path to save agent state + user_name="swarms_corp", # User name for the agent + retry_attempts=3, # Number of retry attempts for failed tasks + context_length=200000, # Maximum length of the context to consider + long_term_memory=chromadb, # Integrates ChromaDB for long-term memory management ) - +# Run the agent with a sample task agent.run( "What are the components of a startups stock incentive equity plan" ) - - ``` -------- - -### `Agent` ++ Long Term Memory ++ Tools! -An LLM equipped with long term memory and tools, a full stack agent capable of automating all and any digital tasks given a good prompt. - -```python -from swarms import Agent -from swarm_models import OpenAIChat -from swarms_memory import ChromaDB -import subprocess -import os - -# Making an instance of the ChromaDB class -memory = ChromaDB( - metric="cosine", - n_results=3, - output_dir="results", - docs_folder="docs", -) - -# Model -model = OpenAIChat( - openai_api_key=os.getenv("OPENAI_API_KEY"), - model_name="gpt-4o-mini", - temperature=0.1, -) - - -# Tools in swarms are simple python functions and docstrings -def terminal( - code: str, -): - """ - Run code in the terminal. - - Args: - code (str): The code to run in the terminal. - - Returns: - str: The output of the code. - """ - out = subprocess.run( - code, shell=True, capture_output=True, text=True - ).stdout - return str(out) - - -def browser(query: str): - """ - Search the query in the browser with the `browser` tool. - - Args: - query (str): The query to search in the browser. - - Returns: - str: The search results. - """ - import webbrowser - - url = f"https://www.google.com/search?q={query}" - webbrowser.open(url) - return f"Searching for {query} in the browser." - - -def create_file(file_path: str, content: str): - """ - Create a file using the file editor tool. - - Args: - file_path (str): The path to the file. - content (str): The content to write to the file. - - Returns: - str: The result of the file creation operation. - """ - with open(file_path, "w") as file: - file.write(content) - return f"File {file_path} created successfully." - - -def file_editor(file_path: str, mode: str, content: str): - """ - Edit a file using the file editor tool. - - Args: - file_path (str): The path to the file. - mode (str): The mode to open the file in. - content (str): The content to write to the file. - - Returns: - str: The result of the file editing operation. - """ - with open(file_path, mode) as file: - file.write(content) - return f"File {file_path} edited successfully." +------- -# Agent -agent = Agent( - agent_name="Devin", - system_prompt=( - "Autonomous agent that can interact with humans and other" - " agents. Be Helpful and Kind. Use the tools provided to" - " assist the user. Return all code in markdown format." - ), - llm=model, - max_loops="auto", - autosave=True, - dashboard=False, - streaming_on=True, - verbose=True, - stopping_token="", - interactive=True, - tools=[terminal, browser, file_editor, create_file], - streaming=True, - long_term_memory=memory, -) +### Misc Agent Settings +We provide vast array of features to save agent states using json, yaml, toml, upload pdfs, batched jobs, and much more! -# Run the agent -out = agent( - "Create a CSV file with the latest tax rates for C corporations in the following ten states and the District of Columbia: Alabama, California, Florida, Georgia, Illinois, New York, North Carolina, Ohio, Texas, and Washington." -) -print(out) +**Method Table** + +| Method | Description | +| --- | --- | +| `to_dict()` | Converts the agent object to a dictionary. | +| `to_toml()` | Converts the agent object to a TOML string. | +| `model_dump_json()` | Dumps the model to a JSON file. | +| `model_dump_yaml()` | Dumps the model to a YAML file. | +| `ingest_docs()` | Ingests documents into the agent's knowledge base. | +| `receive_message()` | Receives a message from a user and processes it. | +| `send_agent_message()` | Sends a message from the agent to a user. | +| `filtered_run()` | Runs the agent with a filtered system prompt. | +| `bulk_run()` | Runs the agent with multiple system prompts. | +| `add_memory()` | Adds a memory to the agent. | +| `check_available_tokens()` | Checks the number of available tokens for the agent. | +| `tokens_checks()` | Performs token checks for the agent. | +| `print_dashboard()` | Prints the dashboard of the agent. | +| `get_docs_from_doc_folders()` | Fetches all the documents from the doc folders. | +| `activate_agentops()` | Activates agent operations. | +| `check_end_session_agentops()` | Checks the end of the session for agent operations. | + +**Mermaid Diagram** +```mermaid +graph LR + A[Agent] -->|to_dict()|> B[Dictionary] + A -->|to_toml()|> C[TOML String] + A -->|model_dump_json()|> D[JSON File] + A -->|model_dump_yaml()|> E[YAML File] + A -->|ingest_docs()|> F[Knowledge Base] + A -->|receive_message()|> G[Processed Message] + A -->|send_agent_message()|> H[Sent Message] + A -->|filtered_run()|> I[Filtered Run] + A -->|bulk_run()|> J[Bulk Run] + A -->|add_memory()|> K[Memory] + A -->|check_available_tokens()|> L[Token Check] + A -->|tokens_checks()|> M[Token Checks] + A -->|print_dashboard()|> N[Dashboard] + A -->|get_docs_from_doc_folders()|> O[Documents] + A -->|activate_agentops()|> P[Agent Ops] + A -->|check_end_session_agentops()|> Q[Session Check] ``` -------- - -### Misc Agent Settings -We provide vast array of features to save agent states using json, yaml, toml, upload pdfs, batched jobs, and much more! ```python # # Convert the agent object to a dictionary