diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 23958829..53b4d273 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -57,29 +57,35 @@ extra: property: G-MPE9C65596 theme: - name: material - custom_dir: overrides - logo: assets/img/swarms-logo.png - palette: + name: material + custom_dir: overrides + logo: assets/img/swarms-logo.png + palette: - scheme: default - primary: black + primary: white # White background + accent: white # Black accents for interactive elements toggle: - icon: material/brightness-7 + icon: material/brightness-7 name: Switch to dark mode - # Palette toggle for dark mode - - scheme: slate + - scheme: slate # Optional: lighter shades for accessibility primary: black + accent: black toggle: icon: material/brightness-4 name: Switch to light mode - features: - - content.code.copy - - content.code.annotate - - navigation.tabs - - navigation.sections - - navigation.expand - - navigation.top - - announce.dismiss + features: + - content.code.copy + - content.code.annotate + - navigation.tabs + - navigation.sections + - navigation.expand + - navigation.top + - announce.dismiss + font: + text: "Fira Sans" # Clean and readable text + code: "Fira Code" # Modern look for code snippets + + # Extensions markdown_extensions: - abbr diff --git a/multi_tool_usage_agent.py b/multi_tool_usage_agent.py new file mode 100644 index 00000000..16f07cae --- /dev/null +++ b/multi_tool_usage_agent.py @@ -0,0 +1,352 @@ +from typing import List, Dict, Any, Optional, Callable +from dataclasses import dataclass +import json +from datetime import datetime +import inspect +import typing +from typing import Union +from swarms import Agent +from swarm_models import OpenAIChat +from dotenv import load_dotenv + + +@dataclass +class ToolDefinition: + name: str + description: str + parameters: Dict[str, Any] + required_params: List[str] + callable: Optional[Callable] = None + + +@dataclass +class ExecutionStep: + step_id: str + tool_name: str + parameters: Dict[str, Any] + purpose: str + depends_on: List[str] + completed: bool = False + result: Optional[Any] = None + + +def extract_type_hints(func: Callable) -> Dict[str, Any]: + """Extract parameter types from function type hints.""" + return typing.get_type_hints(func) + + +def extract_tool_info(func: Callable) -> ToolDefinition: + """Extract tool information from a callable function.""" + # Get function name + name = func.__name__ + + # Get docstring + description = inspect.getdoc(func) or "No description available" + + # Get parameters and their types + signature = inspect.signature(func) + type_hints = extract_type_hints(func) + + parameters = {} + required_params = [] + + for param_name, param in signature.parameters.items(): + # Skip self parameter for methods + if param_name == "self": + continue + + param_type = type_hints.get(param_name, Any) + + # Handle optional parameters + is_optional = ( + param.default != inspect.Parameter.empty + or getattr(param_type, "__origin__", None) is Union + and type(None) in param_type.__args__ + ) + + if not is_optional: + required_params.append(param_name) + + parameters[param_name] = { + "type": str(param_type), + "default": ( + None + if param.default is inspect.Parameter.empty + else param.default + ), + "required": not is_optional, + } + + return ToolDefinition( + name=name, + description=description, + parameters=parameters, + required_params=required_params, + callable=func, + ) + + +class ToolUsingAgent: + def __init__( + self, + tools: List[Callable], + openai_api_key: str, + model_name: str = "gpt-4", + temperature: float = 0.1, + max_loops: int = 10, + ): + # Convert callable tools to ToolDefinitions + self.available_tools = { + tool.__name__: extract_tool_info(tool) for tool in tools + } + + self.execution_plan: List[ExecutionStep] = [] + self.current_step_index = 0 + self.max_loops = max_loops + + # Initialize the OpenAI model + self.model = OpenAIChat( + openai_api_key=openai_api_key, + model_name=model_name, + temperature=temperature, + ) + + # Create system prompt with tool descriptions + self.system_prompt = self._create_system_prompt() + + self.agent = Agent( + agent_name="Tool-Using-Agent", + system_prompt=self.system_prompt, + llm=self.model, + max_loops=1, + autosave=True, + verbose=True, + saved_state_path="tool_agent_state.json", + context_length=200000, + ) + + def _create_system_prompt(self) -> str: + """Create system prompt with available tools information.""" + tools_description = [] + for tool_name, tool in self.available_tools.items(): + tools_description.append( + f""" + Tool: {tool_name} + Description: {tool.description} + Parameters: {json.dumps(tool.parameters, indent=2)} + Required Parameters: {tool.required_params} + """ + ) + + output = f"""You are an autonomous agent capable of executing complex tasks using available tools. + + Available Tools: + {chr(10).join(tools_description)} + + Follow these protocols: + 1. Create a detailed plan using available tools + 2. Execute each step in order + 3. Handle errors appropriately + 4. Maintain execution state + 5. Return results in structured format + + You must ALWAYS respond in the following JSON format: + {{ + "plan": {{ + "description": "Brief description of the overall plan", + "steps": [ + {{ + "step_number": 1, + "tool_name": "name_of_tool", + "description": "What this step accomplishes", + "parameters": {{ + "param1": "value1", + "param2": "value2" + }}, + "expected_output": "Description of expected output" + }} + ] + }}, + "reasoning": "Explanation of why this plan was chosen" + }} + + Before executing any tool: + 1. Validate all required parameters are present + 2. Verify parameter types match specifications + 3. Check parameter values are within valid ranges/formats + 4. Ensure logical dependencies between steps are met + + If any validation fails: + 1. Return error in JSON format with specific details + 2. Suggest corrections if possible + 3. Do not proceed with execution + + After each step execution: + 1. Verify output matches expected format + 2. Log results and any warnings/errors + 3. Update execution state + 4. Determine if plan adjustment needed + + Error Handling: + 1. Catch and classify all errors + 2. Provide detailed error messages + 3. Suggest recovery steps + 4. Maintain system stability + + The final output must be valid JSON that can be parsed. Always check your response can be parsed as JSON before returning. + """ + return output + + def execute_tool( + self, tool_name: str, parameters: Dict[str, Any] + ) -> Any: + """Execute a tool with given parameters.""" + tool = self.available_tools[tool_name] + if not tool.callable: + raise ValueError( + f"Tool {tool_name} has no associated callable" + ) + + # Convert parameters to appropriate types + converted_params = {} + for param_name, param_value in parameters.items(): + param_info = tool.parameters[param_name] + param_type = eval( + param_info["type"] + ) # Note: Be careful with eval + converted_params[param_name] = param_type(param_value) + + return tool.callable(**converted_params) + + def run(self, task: str) -> Dict[str, Any]: + """Execute the complete task with proper logging and error handling.""" + execution_log = { + "task": task, + "start_time": datetime.utcnow().isoformat(), + "steps": [], + "final_result": None + } + + try: + # Create and execute plan + plan_response = self.agent.run(f"Create a plan for: {task}") + plan_data = json.loads(plan_response) + + # Extract steps from the correct path in JSON + steps = plan_data["plan"]["steps"] # Changed from plan_data["steps"] + + for step in steps: + try: + # Check if parameters need default values + for param_name, param_value in step["parameters"].items(): + if isinstance(param_value, str) and not param_value.replace(".", "").isdigit(): + # If parameter is a description rather than a value, set default + if "income" in param_name.lower(): + step["parameters"][param_name] = 75000.0 + elif "year" in param_name.lower(): + step["parameters"][param_name] = 2024 + elif "investment" in param_name.lower(): + step["parameters"][param_name] = 1000.0 + + # Execute the tool + result = self.execute_tool( + step["tool_name"], + step["parameters"] + ) + + execution_log["steps"].append({ + "step_number": step["step_number"], + "tool": step["tool_name"], + "parameters": step["parameters"], + "success": True, + "result": result, + "description": step["description"] + }) + + except Exception as e: + execution_log["steps"].append({ + "step_number": step["step_number"], + "tool": step["tool_name"], + "parameters": step["parameters"], + "success": False, + "error": str(e), + "description": step["description"] + }) + print(f"Error executing step {step['step_number']}: {str(e)}") + # Continue with next step instead of raising + continue + + # Only mark as success if at least some steps succeeded + successful_steps = [s for s in execution_log["steps"] if s["success"]] + if successful_steps: + execution_log["final_result"] = { + "success": True, + "results": successful_steps, + "reasoning": plan_data.get("reasoning", "No reasoning provided") + } + else: + execution_log["final_result"] = { + "success": False, + "error": "No steps completed successfully", + "plan": plan_data + } + + except Exception as e: + execution_log["final_result"] = { + "success": False, + "error": str(e), + "plan": plan_data if 'plan_data' in locals() else None + } + + execution_log["end_time"] = datetime.utcnow().isoformat() + return execution_log + + +# Example usage +if __name__ == "__main__": + load_dotenv() + + # Example tool functions + def research_ira_requirements() -> Dict[str, Any]: + """Research and return ROTH IRA eligibility requirements.""" + return { + "age_requirement": "Must have earned income", + "income_limits": {"single": 144000, "married": 214000}, + } + + def calculate_contribution_limit( + income: float, tax_year: int + ) -> Dict[str, float]: + """Calculate maximum ROTH IRA contribution based on income and tax year.""" + base_limit = 6000 if tax_year <= 2022 else 6500 + if income > 144000: + return {"limit": 0} + return {"limit": base_limit} + + def find_brokers(min_investment: float) -> List[Dict[str, Any]]: + """Find suitable brokers for ROTH IRA based on minimum investment.""" + return [ + {"name": "Broker A", "min_investment": min_investment}, + { + "name": "Broker B", + "min_investment": min_investment * 1.5, + }, + ] + + # Initialize agent with tools + agent = ToolUsingAgent( + tools=[ + research_ira_requirements, + calculate_contribution_limit, + find_brokers, + ], + openai_api_key="", + ) + + # Run a task + result = agent.run( + "How can I establish a ROTH IRA to buy stocks and get a tax break? " + "What are the criteria?" + ) + + print(json.dumps(result, indent=2)) diff --git a/swarms/__init__.py b/swarms/__init__.py index 59fee672..d73b8439 100644 --- a/swarms/__init__.py +++ b/swarms/__init__.py @@ -1,22 +1,38 @@ +import os import concurrent.futures from dotenv import load_dotenv - -# from swarms.structs.workspace_manager import WorkspaceManager -# workspace_manager = WorkspaceManager() -# workspace_manager.run() +from loguru import logger load_dotenv() +# More reliable string comparison +if os.getenv("SWARMS_VERBOSE_GLOBAL", "True").lower() == "false": + logger.disable("") +# Import telemetry functions with error handling from swarms.telemetry.bootup import bootup # noqa: E402, F403 -from swarms.telemetry.sentry_active import ( +from swarms.telemetry.sentry_active import ( # noqa: E402 activate_sentry, ) # noqa: E402 -# Use ThreadPoolExecutor to run bootup and activate_sentry concurrently -with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor: - executor.submit(bootup) - executor.submit(activate_sentry) + +# Run telemetry functions concurrently with error handling +def run_telemetry(): + try: + with concurrent.futures.ThreadPoolExecutor( + max_workers=2 + ) as executor: + future_bootup = executor.submit(bootup) + future_sentry = executor.submit(activate_sentry) + + # Wait for completion and check for exceptions + future_bootup.result() + future_sentry.result() + except Exception as e: + logger.error(f"Error running telemetry functions: {e}") + + +run_telemetry() from swarms.agents import * # noqa: E402, F403 from swarms.artifacts import * # noqa: E402, F403