parent
45b8d72ad2
commit
e810a30e13
@ -0,0 +1,48 @@
|
||||
import gradio as gr
|
||||
from gradio import Interface
|
||||
import threading
|
||||
import os
|
||||
from langchain.llms import OpenAIChat
|
||||
from swarms.agents import OmniModalAgent
|
||||
|
||||
# Initialize the OmniModalAgent
|
||||
llm = OpenAIChat(model_name="gpt-4")
|
||||
agent = OmniModalAgent(llm)
|
||||
|
||||
# Global variable to store chat history
|
||||
chat_history = []
|
||||
|
||||
def update_chat(user_input):
|
||||
global chat_history
|
||||
chat_history.append({"type": "user", "content": user_input})
|
||||
|
||||
# Get agent response
|
||||
agent_response = agent.run(user_input)
|
||||
|
||||
# Let's assume agent_response is a dictionary containing type and content.
|
||||
chat_history.append(agent_response)
|
||||
|
||||
return render_chat(chat_history)
|
||||
|
||||
def render_chat(chat_history):
|
||||
chat_str = ""
|
||||
for message in chat_history:
|
||||
if message['type'] == 'user':
|
||||
chat_str += f"User: {message['content']}<br>"
|
||||
elif message['type'] == 'text':
|
||||
chat_str += f"Agent: {message['content']}<br>"
|
||||
elif message['type'] == 'image':
|
||||
img_path = os.path.join("root_directory", message['content'])
|
||||
chat_str += f"Agent: <img src='{img_path}' alt='image'/><br>"
|
||||
return chat_str
|
||||
|
||||
# Define Gradio interface
|
||||
iface = Interface(
|
||||
fn=update_chat,
|
||||
inputs="text",
|
||||
outputs=gr.outputs.HTML(label="Chat History"),
|
||||
live=True
|
||||
)
|
||||
|
||||
# Launch the Gradio interface
|
||||
iface.launch()
|
Loading…
Reference in new issue