diff --git a/docs/swarms/utils/phoenix_tracer.md b/docs/swarms/utils/phoenix_tracer.md
deleted file mode 100644
index 97ed422a..00000000
--- a/docs/swarms/utils/phoenix_tracer.md
+++ /dev/null
@@ -1,128 +0,0 @@
-# Phoenix Trace Decorator Documentation
-
-## Introduction
-
-Welcome to the documentation for the `phoenix_trace_decorator` module. This module provides a convenient decorator for tracing Python functions and capturing exceptions using Phoenix, a versatile tracing and monitoring tool. Phoenix allows you to gain insights into the execution of your code, capture errors, and monitor performance.
-
-## Table of Contents
-
-1. [Installation](#installation)
-2. [Getting Started](#getting-started)
-3. [Decorator Usage](#decorator-usage)
-4. [Examples](#examples)
-5. [Best Practices](#best-practices)
-6. [References](#references)
-
-## 1. Installation
-
-Before using the `phoenix_trace_decorator`, you need to install the Swarms library. You can install Phoenix using pip:
-
-```bash
-pip install swarms
-```
-
-## 2. Getting Started
-
-Phoenix is a powerful tracing and monitoring tool, and the `phoenix_trace_decorator` simplifies the process of tracing functions and capturing exceptions within your Python code. To begin, ensure that Phoenix is installed, and then import the `phoenix_trace_decorator` module into your Python script.
-
-```python
-from swarms import phoenix_trace_decorator
-```
-
-## 3. Decorator Usage
-
-The `phoenix_trace_decorator` module provides a decorator, `phoenix_trace_decorator`, which can be applied to functions you want to trace. The decorator takes a single argument, a docstring that describes the purpose of the function being traced.
-
-Here is the basic structure of using the decorator:
-
-```python
-@phoenix_trace_decorator("Description of the function")
-def my_function(param1, param2):
- # Function implementation
- pass
-```
-
-## 4. Examples
-
-Let's explore some practical examples of using the `phoenix_trace_decorator` in your code.
-
-### Example 1: Basic Tracing
-
-In this example, we'll trace a simple function and print a message.
-
-```python
-@phoenix_trace_decorator("Tracing a basic function")
-def hello_world():
- print("Hello, World!")
-
-# Call the decorated function
-hello_world()
-```
-
-### Example 2: Tracing a Function with Parameters
-
-You can use the decorator with functions that have parameters.
-
-```python
-@phoenix_trace_decorator("Tracing a function with parameters")
-def add_numbers(a, b):
- result = a + b
- print(f"Result: {result}")
-
-# Call the decorated function with parameters
-add_numbers(2, 3)
-```
-
-### Example 3: Tracing Nested Calls
-
-The decorator can also trace nested function calls.
-
-```python
-@phoenix_trace_decorator("Outer function")
-def outer_function():
- print("Outer function")
-
- @phoenix_trace_decorator("Inner function")
- def inner_function():
- print("Inner function")
-
- inner_function()
-
-# Call the decorated functions
-outer_function()
-```
-
-### Example 4: Exception Handling
-
-Phoenix can capture exceptions and provide detailed information about them.
-
-```python
-@phoenix_trace_decorator("Function with exception handling")
-def divide(a, b):
- try:
- result = a / b
- except ZeroDivisionError as e:
- raise ValueError("Division by zero") from e
-
-# Call the decorated function with an exception
-try:
- divide(5, 0)
-except ValueError as e:
- print(f"Error: {e}")
-```
-
-## 5. Best Practices
-
-When using the `phoenix_trace_decorator`, consider the following best practices:
-
-- Use meaningful docstrings to describe the purpose of the traced functions.
-- Keep your tracing focused on critical parts of your code.
-- Make sure Phoenix is properly configured and running before using the decorator.
-
-## 6. References
-
-For more information on Phoenix and advanced usage, please refer to the [Phoenix Documentation](https://phoenix-docs.readthedocs.io/en/latest/).
-
----
-
-By following this documentation, you can effectively use the `phoenix_trace_decorator` to trace your Python functions, capture exceptions, and gain insights into the execution of your code. This tool is valuable for debugging, performance optimization, and monitoring the health of your applications.
\ No newline at end of file
diff --git a/mkdocs.yml b/mkdocs.yml
index de263ac6..fa2f6955 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -111,7 +111,6 @@ nav:
- PGVectorStore: "swarms/memory/pg.md"
- ShortTermMemory: "swarms/memory/short_term_memory.md"
- swarms.utils:
- - phoenix_trace_decorator: "swarms/utils/phoenix_tracer.md"
- math_eval: "swarms/utils/math_eval.md"
- Guides:
- Overview: "examples/index.md"
diff --git a/playground/demos/logistics/logistics.py b/playground/demos/logistics/logistics.py
index 0e09f910..108ec702 100644
--- a/playground/demos/logistics/logistics.py
+++ b/playground/demos/logistics/logistics.py
@@ -12,7 +12,6 @@ from swarms.prompts.logistics import (
Efficiency_Agent_Prompt,
)
-# from swarms.utils.phoenix_handler import phoenix_trace_decorator
# from swarms.utils.banana_wrapper import banana
load_dotenv()
@@ -26,7 +25,6 @@ llm = GPT4VisionAPI(openai_api_key=api_key)
factory_image = "factory_image1.jpg"
# Initialize agents with respective prompts
-# @phoenix_trace_decorator("This function is an agent and is traced by Phoenix.")
health_security_agent = Agent(
llm=llm,
sop=Health_Security_Agent_Prompt,
@@ -34,7 +32,6 @@ health_security_agent = Agent(
multi_modal=True,
)
-# @phoenix_trace_decorator("This function is an agent and is traced by Phoenix.")
quality_control_agent = Agent(
llm=llm,
sop=Quality_Control_Agent_Prompt,
@@ -42,7 +39,6 @@ quality_control_agent = Agent(
multi_modal=True,
)
-# @phoenix_trace_decorator("This function is an agent and is traced by Phoenix.")
productivity_agent = Agent(
llm=llm,
sop=Productivity_Agent_Prompt,
@@ -50,17 +46,14 @@ productivity_agent = Agent(
multi_modal=True,
)
-# @phoenix_trace_decorator("This function is an agent and is traced by Phoenix.")
safety_agent = Agent(
llm=llm, sop=Safety_Agent_Prompt, max_loops=1, multi_modal=True
)
-# @phoenix_trace_decorator("This function is an agent and is traced by Phoenix.")
security_agent = Agent(
llm=llm, sop=Security_Agent_Prompt, max_loops=1, multi_modal=True
)
-# @phoenix_trace_decorator("This function is an agent and is traced by Phoenix.")
sustainability_agent = Agent(
llm=llm,
sop=Sustainability_Agent_Prompt,
@@ -68,7 +61,6 @@ sustainability_agent = Agent(
multi_modal=True,
)
-# @phoenix_trace_decorator("This function is an agent and is traced by Phoenix.")
efficiency_agent = Agent(
llm=llm,
sop=Efficiency_Agent_Prompt,
diff --git a/playground/demos/optimize_llm_stack/vortex.py b/playground/demos/optimize_llm_stack/vortex.py
index a40c29b9..5badb2fd 100644
--- a/playground/demos/optimize_llm_stack/vortex.py
+++ b/playground/demos/optimize_llm_stack/vortex.py
@@ -5,7 +5,6 @@ from dotenv import load_dotenv
from swarms.models import OpenAIChat
from swarms.structs import Agent
-# from swarms.utils.phoenix_handler import phoenix_trace_decorator
# import modal
load_dotenv()
@@ -22,9 +21,6 @@ llm = OpenAIChat(
# Agent
-# @phoenix_trace_decorator(
-# "This function is an agent and is traced by Phoenix."
-# )
# @stub.function(gpu="any")
agent = Agent(
llm=llm,
diff --git a/swarms/utils/phoenix_handler.py b/swarms/utils/phoenix_handler.py
deleted file mode 100644
index 329d3f2a..00000000
--- a/swarms/utils/phoenix_handler.py
+++ /dev/null
@@ -1,52 +0,0 @@
-import functools
-import traceback
-import phoenix as px
-
-
-def phoenix_trace_decorator(doc_string):
- """Phoenix trace decorator.
-
-
- Args:
- doc_string (_type_): doc string for the function
-
-
- Example:
- >>> @phoenix_trace_decorator(
- >>> "This is a doc string"
- >>> )
- >>> def test_function():
- >>> print("Hello world")
- >>>
- >>> test_function()
-
-
- # Example of using the decorator
- @phoenix_trace_decorator("This function does XYZ and is traced by Phoenix.")
- def my_function(param1, param2):
- # Function implementation
- pass
- """
-
- def decorator(func):
- @functools.wraps(func)
- def wrapper(*args, **kwargs):
- # Start phoenix session for tracing
- session = px.active_session() or px.launch_app()
-
- try:
- # Attempt to execute the function
- result = func(*args, **kwargs)
- return result
- except Exception as error:
- error_info = traceback.format_exc()
- session.trace_exception(
- exception=error, error_info=error_info
- )
- raise
-
- # Atteach docs to wrapper func
- wrapper.__doc__ = doc_string
- return wrapper
-
- return decorator