pull/10/head
Kye 1 year ago
parent 30fa7e1e87
commit ec6152845c

@ -0,0 +1,52 @@
import pytest
from unittest.mock import Mock, MagicMock
from swarms.agents.memory.oceandb import OceanDB
@pytest.fixture
def mock_ocean_client():
return Mock()
@pytest.fixture
def mock_collection():
return Mock()
@pytest.fixture
def ocean_db(mock_ocean_client):
OceanDB.client = mock_ocean_client
return OceanDB()
def test_init(ocean_db, mock_ocean_client):
mock_ocean_client.heartbeat.return_value = "OK"
assert ocean_db.client.heartbeat() == "OK"
def test_create_collection(ocean_db, mock_ocean_client, mock_collection):
mock_ocean_client.create_collection.return_value = mock_collection
collection = ocean_db.create_collection("test", "text")
assert collection == mock_collection
def test_append_document(ocean_db, mock_collection):
document = "test_document"
id = "test_id"
ocean_db.append_document(mock_collection, document, id)
mock_collection.add.assert_called_once_with(documents=[document], ids=[id])
def test_add_documents(ocean_db, mock_collection):
documents = ["test_document1", "test_document2"]
ids = ["test_id1", "test_id2"]
ocean_db.add_documents(mock_collection, documents, ids)
mock_collection.add.assert_called_once_with(documents=documents, ids=ids)
def test_query(ocean_db, mock_collection):
query_texts = ["test_query"]
n_results = 10
mock_collection.query.return_value = "query_result"
result = ocean_db.query(mock_collection, query_texts, n_results)
assert result == "query_result"

@ -0,0 +1,69 @@
import pytest
import torch
from unittest.mock import Mock, MagicMock
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from your_module import HuggingFaceLLM # replace with actual import
@pytest.fixture
def mock_torch():
return Mock()
@pytest.fixture
def mock_autotokenizer():
return Mock()
@pytest.fixture
def mock_automodelforcausallm():
return Mock()
@pytest.fixture
def mock_bitsandbytesconfig():
return Mock()
@pytest.fixture
def hugging_face_llm(mock_torch, mock_autotokenizer, mock_automodelforcausallm, mock_bitsandbytesconfig):
HuggingFaceLLM.torch = mock_torch
HuggingFaceLLM.AutoTokenizer = mock_autotokenizer
HuggingFaceLLM.AutoModelForCausalLM = mock_automodelforcausallm
HuggingFaceLLM.BitsAndBytesConfig = mock_bitsandbytesconfig
return HuggingFaceLLM(model_id='test')
def test_init(hugging_face_llm, mock_autotokenizer, mock_automodelforcausallm):
assert hugging_face_llm.model_id == 'test'
mock_autotokenizer.from_pretrained.assert_called_once_with('test')
mock_automodelforcausallm.from_pretrained.assert_called_once_with('test', quantization_config=None)
def test_init_with_quantize(hugging_face_llm, mock_autotokenizer, mock_automodelforcausallm, mock_bitsandbytesconfig):
quantization_config = {
'load_in_4bit': True,
'bnb_4bit_use_double_quant': True,
'bnb_4bit_quant_type': "nf4",
'bnb_4bit_compute_dtype': torch.bfloat16
}
mock_bitsandbytesconfig.return_value = quantization_config
hugging_face_llm = HuggingFaceLLM(model_id='test', quantize=True)
mock_bitsandbytesconfig.assert_called_once_with(**quantization_config)
mock_autotokenizer.from_pretrained.assert_called_once_with('test')
mock_automodelforcausallm.from_pretrained.assert_called_once_with('test', quantization_config=quantization_config)
def test_generate_text(hugging_face_llm):
prompt_text = 'test prompt'
expected_output = 'test output'
hugging_face_llm.tokenizer.encode.return_value = torch.tensor([0]) # Mock tensor
hugging_face_llm.model.generate.return_value = torch.tensor([0]) # Mock tensor
hugging_face_llm.tokenizer.decode.return_value = expected_output
output = hugging_face_llm.generate_text(prompt_text)
assert output == expected_output

@ -0,0 +1,61 @@
import pytest
from unittest.mock import Mock
from swarms.orchestrate import Orchestrator
@pytest.fixture
def mock_agent():
return Mock()
@pytest.fixture
def mock_task():
return {"task_id": 1, "task_data": "data"}
@pytest.fixture
def mock_vector_db():
return Mock()
@pytest.fixture
def orchestrator(mock_agent, mock_vector_db):
agent_list = [mock_agent for _ in range(5)]
task_queue = []
return Orchestrator(mock_agent, agent_list, task_queue, mock_vector_db)
def test_assign_task(orchestrator, mock_agent, mock_task, mock_vector_db):
orchestrator.task_queue.append(mock_task)
orchestrator.assign_task(0, mock_task)
mock_agent.process_task.assert_called_once()
mock_vector_db.add_documents.assert_called_once()
def test_retrieve_results(orchestrator, mock_vector_db):
mock_vector_db.query.return_value = "expected_result"
assert orchestrator.retrieve_results(0) == "expected_result"
def test_update_vector_db(orchestrator, mock_vector_db):
data = {"vector": [0.1, 0.2, 0.3], "task_id": 1}
orchestrator.update_vector_db(data)
mock_vector_db.add_documents.assert_called_once_with([data['vector']], [str(data['task_id'])])
def test_get_vector_db(orchestrator, mock_vector_db):
assert orchestrator.get_vector_db() == mock_vector_db
def test_append_to_db(orchestrator, mock_vector_db):
collection = "test_collection"
result = "test_result"
orchestrator.append_to_db(collection, result)
mock_vector_db.append_document.assert_called_once_with(collection, result, id=str(id(result)))
def test_run(orchestrator, mock_agent, mock_vector_db):
objective = "test_objective"
collection = "test_collection"
orchestrator.run(objective, collection)
mock_agent.process_task.assert_called()
mock_vector_db.append_document.assert_called()

@ -1,64 +1,73 @@
import unittest
import swarms
from swarms.workers.worker_node import WorkerNode
from swarms.boss.BossNode import BossNode
import pytest
import logging
from unittest.mock import Mock, patch
from swarms.swarms import HierarchicalSwarm # replace with your actual module name
class TestSwarms(unittest.TestCase):
def setUp(self):
self.swarm = swarms.Swarms('fake_api_key')
@pytest.fixture
def swarm():
return HierarchicalSwarm(
model_id='gpt-4',
openai_api_key='some_api_key',
use_vectorstore=True,
embedding_size=1024,
use_async=False,
human_in_the_loop=True,
model_type='openai',
boss_prompt='boss',
worker_prompt='worker',
temperature=0.5,
max_iterations=100,
logging_enabled=True
)
def test_initialize_llm(self):
llm = self.swarm.initialize_llm(swarms.ChatOpenAI)
self.assertIsNotNone(llm)
@pytest.fixture
def swarm_no_logging():
return HierarchicalSwarm(logging_enabled=False)
def test_initialize_tools(self):
tools = self.swarm.initialize_tools(swarms.ChatOpenAI)
self.assertIsNotNone(tools)
def test_swarm_init(swarm):
assert swarm.model_id == 'gpt-4'
assert swarm.openai_api_key == 'some_api_key'
assert swarm.use_vectorstore
assert swarm.embedding_size == 1024
assert not swarm.use_async
assert swarm.human_in_the_loop
assert swarm.model_type == 'openai'
assert swarm.boss_prompt == 'boss'
assert swarm.worker_prompt == 'worker'
assert swarm.temperature == 0.5
assert swarm.max_iterations == 100
assert swarm.logging_enabled
assert isinstance(swarm.logger, logging.Logger)
def test_initialize_vectorstore(self):
vectorstore = self.swarm.initialize_vectorstore()
self.assertIsNotNone(vectorstore)
def test_swarm_no_logging_init(swarm_no_logging):
assert not swarm_no_logging.logging_enabled
assert swarm_no_logging.logger.disabled
def test_run(self):
objective = "Do a web search for 'OpenAI'"
result = self.swarm.run(objective)
self.assertIsNotNone(result)
@patch('your_module.OpenAI')
@patch('your_module.HuggingFaceLLM')
def test_initialize_llm(mock_huggingface, mock_openai, swarm):
swarm.initialize_llm('openai')
mock_openai.assert_called_once_with(openai_api_key='some_api_key', temperature=0.5)
swarm.initialize_llm('huggingface')
mock_huggingface.assert_called_once_with(model_id='gpt-4', temperature=0.5)
@patch('your_module.HierarchicalSwarm.initialize_llm')
def test_initialize_tools(mock_llm, swarm):
mock_llm.return_value = 'mock_llm_class'
tools = swarm.initialize_tools('openai')
assert 'mock_llm_class' in tools
class TestWorkerNode(unittest.TestCase):
def setUp(self):
swarm = swarms.Swarms('fake_api_key')
worker_tools = swarm.initialize_tools(swarms.ChatOpenAI)
vectorstore = swarm.initialize_vectorstore()
self.worker_node = swarm.initialize_worker_node(worker_tools, vectorstore)
@patch('your_module.HierarchicalSwarm.initialize_llm')
def test_initialize_tools_with_extra_tools(mock_llm, swarm):
mock_llm.return_value = 'mock_llm_class'
tools = swarm.initialize_tools('openai', extra_tools=['tool1', 'tool2'])
assert 'tool1' in tools
assert 'tool2' in tools
def test_create_agent(self):
self.worker_node.create_agent("Worker 1", "Assistant", False, {})
self.assertIsNotNone(self.worker_node.agent)
def test_run(self):
tool_input = {'prompt': "Search the web for 'OpenAI'"}
result = self.worker_node.run(tool_input)
self.assertIsNotNone(result)
class TestBossNode(unittest.TestCase):
def setUp(self):
swarm = swarms.Swarms('fake_api_key')
worker_tools = swarm.initialize_tools(swarms.ChatOpenAI)
vectorstore = swarm.initialize_vectorstore()
worker_node = swarm.initialize_worker_node(worker_tools, vectorstore)
self.boss_node = swarm.initialize_boss_node(vectorstore, worker_node)
def test_create_task(self):
task = self.boss_node.create_task("Do a web search for 'OpenAI'")
self.assertIsNotNone(task)
def test_execute_task(self):
task = self.boss_node.create_task("Do a web search for 'OpenAI'")
result = self.boss_node.execute_task(task)
self.assertIsNotNone(result)
if __name__ == '__main__':
unittest.main()
@patch('your_module.OpenAIEmbeddings')
@patch('your_module.FAISS')
def test_initialize_vectorstore(mock_faiss, mock_openai_embeddings, swarm):
mock_openai_embeddings.return_value.embed_query = 'embed_query'
vectorstore = swarm.initialize_vectorstore()
mock_faiss.assert_called_once_with('embed_query', instance_of(faiss.IndexFlatL2), instance_of(InMemoryDocstore), {})

Loading…
Cancel
Save