From ecff045f41cbf20f8bb59b0f7d6d7bd565791844 Mon Sep 17 00:00:00 2001 From: Kye Date: Thu, 27 Jul 2023 17:51:25 -0400 Subject: [PATCH] clean up --- tests/agents/agents.py | 120 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 120 insertions(+) create mode 100644 tests/agents/agents.py diff --git a/tests/agents/agents.py b/tests/agents/agents.py new file mode 100644 index 00000000..3fc11e5e --- /dev/null +++ b/tests/agents/agents.py @@ -0,0 +1,120 @@ +import pytest +from unittest.mock import Mock, patch +from swarms.agents.agents import AgentNodeInitializer, AgentNode, agent # replace with actual import + +# For initializing AgentNodeInitializer in multiple tests +@pytest.fixture +def mock_agent_node_initializer(): + with patch('your_module.ChatOpenAI') as mock_llm, \ + patch('your_module.AutoGPT') as mock_agent: + + initializer = AgentNodeInitializer(model_type='openai', model_id='test', openai_api_key='test_key', temperature=0.5) + initializer.llm = mock_llm + initializer.tools = [Mock(spec=BaseTool)] + initializer.vectorstore = Mock() + initializer.agent = mock_agent + + return initializer + + +# Test initialize_llm method of AgentNodeInitializer class +@pytest.mark.parametrize("model_type", ['openai', 'huggingface', 'invalid']) +def test_agent_node_initializer_initialize_llm(model_type, mock_agent_node_initializer): + with patch('your_module.ChatOpenAI') as mock_openai, \ + patch('your_module.HuggingFaceLLM') as mock_huggingface: + + if model_type == 'invalid': + with pytest.raises(ValueError): + mock_agent_node_initializer.initialize_llm(model_type, 'model_id', 'openai_api_key', 0.5) + else: + mock_agent_node_initializer.initialize_llm(model_type, 'model_id', 'openai_api_key', 0.5) + if model_type == 'openai': + mock_openai.assert_called_once() + elif model_type == 'huggingface': + mock_huggingface.assert_called_once() + + +# Test add_tool method of AgentNodeInitializer class +def test_agent_node_initializer_add_tool(mock_agent_node_initializer): + with patch('your_module.BaseTool') as mock_base_tool: + mock_agent_node_initializer.add_tool(mock_base_tool) + assert mock_base_tool in mock_agent_node_initializer.tools + + +# Test run method of AgentNodeInitializer class +@pytest.mark.parametrize("prompt", ['valid prompt', '']) +def test_agent_node_initializer_run(prompt, mock_agent_node_initializer): + if prompt == '': + with pytest.raises(ValueError): + mock_agent_node_initializer.run(prompt) + else: + assert mock_agent_node_initializer.run(prompt) == "Task completed by AgentNode" + + +# For initializing AgentNode in multiple tests +@pytest.fixture +def mock_agent_node(): + with patch('your_module.ChatOpenAI') as mock_llm, \ + patch('your_module.AgentNodeInitializer') as mock_agent_node_initializer: + + mock_agent_node = AgentNode('test_key') + mock_agent_node.llm_class = mock_llm + mock_agent_node.vectorstore = Mock() + mock_agent_node_initializer.llm = mock_llm + + return mock_agent_node + + +# Test initialize_llm method of AgentNode class +@pytest.mark.parametrize("llm_class", ['openai', 'huggingface']) +def test_agent_node_initialize_llm(llm_class, mock_agent_node): + with patch('your_module.ChatOpenAI') as mock_openai, \ + patch('your_module.HuggingFaceLLM') as mock_huggingface: + + mock_agent_node.initialize_llm(llm_class) + if llm_class == 'openai': + mock_openai.assert_called_once() + elif llm_class == 'huggingface': + mock_huggingface.assert_called_once() + + +# Test initialize_tools method of AgentNode class +def test_agent_node_initialize_tools(mock_agent_node): + with patch('your_module.DuckDuckGoSearchRun') as mock_ddg, \ + patch('your_module.WriteFileTool') as mock_write_file, \ + patch('your_module.ReadFileTool') as mock_read_file, \ + patch('your_module.process_csv') as mock_process_csv, \ + patch('your_module.WebpageQATool') as mock_webpage_qa: + + mock_agent_node.initialize_tools('openai') + assert mock_ddg.called + assert mock_write_file.called + assert mock_read_file.called + assert mock_process_csv.called + assert mock_webpage_qa.called + + +# Test create_agent method of AgentNode class +def test_agent_node_create_agent(mock_agent_node): + with patch.object(mock_agent_node, 'initialize_llm'), \ + patch.object(mock_agent_node, 'initialize_tools'), \ + patch.object(mock_agent_node, 'initialize_vectorstore'), \ + patch('your_module.AgentNodeInitializer') as mock_agent_node_initializer: + + mock_agent_node.create_agent() + mock_agent_node_initializer.assert_called_once() + mock_agent_node_initializer.return_value.create_agent.assert_called_once() + + +# Test agent function +@pytest.mark.parametrize("openai_api_key,objective", [('valid_key', 'valid_objective'), ('', 'valid_objective'), ('valid_key', '')]) +def test_agent(openai_api_key, objective): + if openai_api_key == '' or objective == '': + with pytest.raises(ValueError): + agent(openai_api_key, objective) + else: + with patch('your_module.AgentNodeInitializer') as mock_agent_node_initializer: + mock_agent_node = mock_agent_node_initializer.return_value.create_agent.return_value + mock_agent_node.run.return_value = 'Agent output' + result = agent(openai_api_key, objective) + assert result == 'Agent output'