[FEATS][ csv_to_text] [json_to_text] [txt_to_text] [data_to_text] [Agent][ingest_docs]

pull/362/head
Kye 1 year ago
parent b61c250140
commit ef4759472e

@ -29,6 +29,7 @@ from swarms.utils.parse_code import (
)
from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.token_count_tiktoken import limit_tokens_from_string
from swarms.utils.data_to_text import data_to_text
# Utils
@ -52,15 +53,10 @@ def agent_id():
class Agent:
"""
Agent is the structure that provides autonomy to any llm in a reliable and effective fashion.
The agent structure is designed to be used with any llm and provides the following features:
Agent is the backbone to connect LLMs with tools and long term memory. Agent also provides the ability to
ingest any type of docs like PDFs, Txts, Markdown, Json, and etc for the agent. Here is a list of features.
Features:
* Interactive, AI generates, then user input
* Message history and performance history fed -> into context -> truncate if too long
* Ability to save and load flows
* Ability to provide feedback on responses
* Ability to provide a loop interval
Args:
llm (Any): The language model to use
@ -191,6 +187,7 @@ class Agent:
traceback: Any = None,
traceback_handlers: Any = None,
streaming_on: Optional[bool] = False,
docs: List[str] = None,
*args,
**kwargs: Any,
):
@ -234,9 +231,8 @@ class Agent:
self.traceback = traceback
self.traceback_handlers = traceback_handlers
self.streaming_on = streaming_on
# self.system_prompt = AGENT_SYSTEM_PROMPT_3
self.docs = docs
# The max_loops will be set dynamically if the dynamic_loop
if self.dynamic_loops:
self.max_loops = "auto"
@ -266,6 +262,12 @@ class Agent:
self.tools_prompt_prep(self.tool_docs, SCENARIOS)
)
# self.short_memory_test = Conversation(time_enabled=True)
# If the docs exist then ingest the docs
if self.docs:
self.ingest_docs(self.docs)
def set_system_prompt(self, system_prompt: str):
"""Set the system prompt"""
self.system_prompt = system_prompt
@ -640,10 +642,6 @@ class Agent:
AGENT_SYSTEM_PROMPT_3, response
)
# # Retreiving long term memory
# if self.memory:
# task = self.agent_memory_prompt(response, task)
attempt = 0
while attempt < self.retry_attempts:
try:
@ -717,6 +715,15 @@ class Agent:
print(f"Error running agent: {error}")
raise
def __call__(self, task: str, img: str = None, *args, **kwargs):
"""Call the agent
Args:
task (str): _description_
img (str, optional): _description_. Defaults to None.
"""
self.run(task, img, *args, **kwargs)
def _run(self, **kwargs: Any) -> str:
"""Run the agent on a task
@ -823,20 +830,6 @@ class Agent:
except Exception as error:
print(colored(f"Error running bulk run: {error}", "red"))
@staticmethod
def from_llm_and_template(llm: Any, template: str) -> "Agent":
"""Create AgentStream from LLM and a string template."""
return Agent(llm=llm, template=template)
@staticmethod
def from_llm_and_template_file(
llm: Any, template_file: str
) -> "Agent":
"""Create AgentStream from LLM and a template file."""
with open(template_file, "r") as f:
template = f.read()
return Agent(llm=llm, template=template)
def save(self, file_path) -> None:
"""Save the agent history to a file.
@ -1352,3 +1345,17 @@ class Agent:
"""
return PROMPT
def ingest_docs(self, docs: List[str], *args, **kwargs):
"""Ingest the docs into the memory
Args:
docs (List[str]): _description_
Returns:
_type_: _description_
"""
for doc in docs:
data = data_to_text(doc)
return self.short_memory.append(data)

@ -12,6 +12,12 @@ from swarms.utils.prep_torch_model_inference import (
prep_torch_inference,
)
from swarms.utils.token_count_tiktoken import limit_tokens_from_string
from swarms.utils.data_to_text import (
csv_to_text,
json_to_text,
txt_to_text,
data_to_text,
)
__all__ = [
@ -27,4 +33,8 @@ __all__ = [
"prep_torch_inference",
"print_class_parameters",
"check_device",
"csv_to_text",
"json_to_text",
"txt_to_text",
"data_to_text",
]

@ -0,0 +1,49 @@
import os
import csv
import json
from swarms.utils.pdf_to_text import pdf_to_text
def csv_to_text(file):
with open(file, "r") as file:
reader = csv.reader(file)
data = list(reader)
return str(data)
def json_to_text(file):
with open(file, "r") as file:
data = json.load(file)
return json.dumps(data)
def txt_to_text(file):
with open(file, "r") as file:
data = file.read()
return data
def data_to_text(file):
"""
Converts the given data file to text format.
Args:
file (str): The path to the data file.
Returns:
str: The text representation of the data file.
Raises:
ValueError: If the file extension is not supported.
"""
_, ext = os.path.splitext(file)
if ext == ".csv":
return csv_to_text(file)
elif ext == ".json":
return json_to_text(file)
elif ext == ".txt":
return txt_to_text(file)
elif ext == ".pdf":
return pdf_to_text(file)
else:
raise ValueError(f"Unsupported file extension: {ext}")
Loading…
Cancel
Save