diff --git a/README.md b/README.md index f391c937..be68f685 100644 --- a/README.md +++ b/README.md @@ -203,7 +203,117 @@ response = agent.run("Generate a video of a swarm of fish and then make an image print(response) ``` +--- + +### Multi-Agent Swarm for Logistics +- Swarms is a framework designed for real-world deployment here is a demo presenting a fully ready to use Swarm for a vast array of logistics tasks. +- Swarms is designed to be modular and reliable for real-world deployments. +- Swarms is the first framework that unleases multi-modal autonomous agents in the real world. + +```python +from swarms.structs import Agent +import os +from dotenv import load_dotenv +from swarms.models import GPT4VisionAPI +from swarms.prompts.logistics import ( + Health_Security_Agent_Prompt, + Quality_Control_Agent_Prompt, + Productivity_Agent_Prompt, + Safety_Agent_Prompt, + Security_Agent_Prompt, + Sustainability_Agent_Prompt, + Efficiency_Agent_Prompt, +) + +# Load ENV +load_dotenv() +api_key = os.getenv("OPENAI_API_KEY") +# GPT4VisionAPI +llm = GPT4VisionAPI(openai_api_key=api_key) + +# Image for analysis +factory_image = "factory_image1.jpg" + +# Initialize agents with respective prompts +health_security_agent = Agent( + llm=llm, + sop=Health_Security_Agent_Prompt, + max_loops=1, + multi_modal=True, +) + +# Quality control agent +quality_control_agent = Agent( + llm=llm, + sop=Quality_Control_Agent_Prompt, + max_loops=1, + multi_modal=True, +) + + +# Productivity Agent +productivity_agent = Agent( + llm=llm, + sop=Productivity_Agent_Prompt, + max_loops=1, + multi_modal=True, +) + +# Initiailize safety agent +safety_agent = Agent( + llm=llm, sop=Safety_Agent_Prompt, max_loops=1, multi_modal=True +) + +# Init the security agent +security_agent = Agent( + llm=llm, sop=Security_Agent_Prompt, max_loops=1, multi_modal=True +) + + +# Initialize sustainability agent +sustainability_agent = Agent( + llm=llm, + sop=Sustainability_Agent_Prompt, + max_loops=1, + multi_modal=True, +) + + +# Initialize efficincy agent +efficiency_agent = Agent( + llm=llm, + sop=Efficiency_Agent_Prompt, + max_loops=1, + multi_modal=True, +) + +# Run agents with respective tasks on the same image +health_analysis = health_security_agent.run( + "Analyze the safety of this factory", factory_image +) +quality_analysis = quality_control_agent.run( + "Examine product quality in the factory", factory_image +) +productivity_analysis = productivity_agent.run( + "Evaluate factory productivity", factory_image +) +safety_analysis = safety_agent.run( + "Inspect the factory's adherence to safety standards", + factory_image, +) +security_analysis = security_agent.run( + "Assess the factory's security measures and systems", + factory_image, +) +sustainability_analysis = sustainability_agent.run( + "Examine the factory's sustainability practices", factory_image +) +efficiency_analysis = efficiency_agent.run( + "Analyze the efficiency of the factory's manufacturing process", + factory_image, +) +``` --- # Features 🤖 diff --git a/playground/demos/multi_modal_chain_of_thought/vcot.py b/playground/demos/multi_modal_chain_of_thought/vcot.py new file mode 100644 index 00000000..e69de29b diff --git a/pyproject.toml b/pyproject.toml index 4e1c1c7c..c9f620a0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "swarms" -version = "2.7.7" +version = "2.7.8" description = "Swarms - Pytorch" license = "MIT" authors = ["Kye Gomez "]