[FEAT][GitHub Actions] Add comprehensive testing workflow and test suite

pull/948/head
harshalmore31 5 days ago
parent 73dca28bd5
commit f3e26623ae

@ -0,0 +1,89 @@
# .github/workflows/comprehensive_tests.yml
name: Swarms Comprehensive Tests
# This workflow triggers on pushes and pull requests to the master branch.
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
jobs:
test:
runs-on: ubuntu-latest
strategy:
matrix:
# You can test against multiple Python versions here if needed.
python-version: ["3.10"]
steps:
# Step 1: Check out the code.
# For pull requests, this action automatically checks out the code
# from the PR's branch, not the master branch. This is the key
# to testing the proposed changes.
- name: Checkout repository
uses: actions/checkout@v4
# Step 2: Set up the specified Python version.
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
# Step 3: Install Poetry for dependency management.
- name: Install Poetry
uses: snok/install-poetry@v1
with:
virtualenvs-create: true
virtualenvs-in-project: true
# Step 4: Cache dependencies to speed up subsequent runs.
- name: Load cached venv
id: cached-poetry-dependencies
uses: actions/cache@v3
with:
path: .venv
key: venv-${{ runner.os }}-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/poetry.lock') }}
# Step 5: Install dependencies and the project package itself.
# This is the crucial step. 'poetry install' will install all dependencies
# and also install the 'swarms' package from the checked-out PR code
# in editable mode within the virtual environment.
- name: Install dependencies
if: steps.cached-poetry-dependencies.outputs.cache-hit != 'true'
run: poetry install --no-interaction --with dev --all-extras
# Step 6: Create dummy image files required for multi-modal tests.
# This ensures your tests are self-contained.
- name: Create dummy image files for testing
run: |
mkdir -p tests/test_data
touch tests/test_data/image1.jpg
touch tests/test_data/image2.png
echo "dummy image data" > tests/test_data/image1.jpg
echo "dummy image data" > tests/test_data/image2.png
# Step 7: Run the comprehensive test suite.
# 'poetry run' executes the command within the virtual environment,
# ensuring that when 'tests/comprehensive_test.py' imports 'swarms',
# it's importing the code from the pull request.
- name: Run Comprehensive Test Suite
env:
# Securely pass API keys and other secrets to the test environment.
# These must be configured in your repository's secrets.
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# GITHUB_REPO_OWNER: "kyegomez"
# GITHUB_REPO_NAME: "swarms"
run: |
poetry run python tests/comprehensive_test.py
# Step 8: Upload the generated test report as an artifact.
# This happens even if the previous steps fail, allowing you to debug.
- name: Upload Test Report
if: always()
uses: actions/upload-artifact@v3
with:
name: test-report-${{ matrix.python-version }}
path: test_runs/

@ -0,0 +1,289 @@
import os
import json
import time
from datetime import datetime
from typing import List, Dict, Any, Callable
import requests
from dotenv import load_dotenv
# Basic Imports for Swarms
from swarms.structs import Agent, SequentialWorkflow, ConcurrentWorkflow
from swarms.tools.base_tool import BaseTool
# Setup Logging
from loguru import logger
logger.add("test_runs/test_failures.log", rotation="10 MB", level="ERROR")
# Load environment variables
load_dotenv()
# --- Constants and Configuration ---
API_KEY = os.getenv("OPENAI_API_KEY")
# GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
# GITHUB_REPO_OWNER = os.getenv("GITHUB_REPO_OWNER", "kyegomez")
# GITHUB_REPO_NAME = os.getenv("GITHUB_REPO_NAME", "swarms")
# BASE_URL = "https://api.github.com"
# GITHUB_HEADERS = {
# "Authorization": f"token {GITHUB_TOKEN}",
# "Accept": "application/vnd.github.v3+json",
# }
# --- Helper Functions ---
def generate_timestamp() -> str:
"""Generate a timestamp string for filenames"""
return datetime.now().strftime("%Y%m%d_%H%M%S")
def write_markdown_report(results: List[Dict[str, Any]], filename: str):
"""Write test results to a markdown file"""
if not os.path.exists("test_runs"):
os.makedirs("test_runs")
with open(f"test_runs/{filename}.md", "w") as f:
f.write("# Swarms Comprehensive Test Report\n\n")
f.write(f"Test Run: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
total = len(results)
passed = sum(1 for r in results if r["status"] == "passed")
failed = total - passed
f.write("## Summary\n\n")
f.write(f"- **Total Tests:** {total}\n")
f.write(f"- **Passed:** {passed}\n")
f.write(f"- **Failed:** {failed}\n")
f.write(f"- **Success Rate:** {(passed/total)*100:.2f}%\n\n")
f.write("## Detailed Results\n\n")
for result in results:
f.write(f"### {result['test_name']}\n\n")
f.write(f"**Status:** {result['status'].upper()}\n\n")
if result.get("response"):
# Use triple backticks for json code block
f.write("Response:\n```json\n")
# Ensure response is a string, then attempt to pretty-print if it's JSON
response_str = result["response"]
try:
# Try to parse and re-dump for pretty printing
response_json = json.loads(response_str) if isinstance(response_str, str) else response_str
f.write(json.dumps(response_json, indent=2))
except (json.JSONDecodeError, TypeError):
f.write(str(response_str))
f.write("\n```\n\n")
if result.get("error"):
f.write(f"**Error:**\n```\n{result['error']}\n```\n\n")
f.write("---\n\n")
# def create_github_issue(test_result: Dict[str, Any]) -> Dict[str, Any]:
# """Create a GitHub issue for a failed test"""
# if not all([GITHUB_TOKEN, GITHUB_REPO_OWNER, GITHUB_REPO_NAME]):
# logger.warning("GitHub credentials not configured. Skipping issue creation.")
# return None
# if test_result["status"] != "failed":
# return None
# issue_title = f"Automated Test Failure: {test_result['test_name']}"
# issue_body = f"""
# ## Test Failure Report
# - **Test Name**: `{test_result['test_name']}`
# - **Timestamp**: `{datetime.now().isoformat()}`
# - **Status**: {test_result['status']}
# ### Error Information
# ```
# {test_result.get('error', 'No error message available')}
# ```
# ### Response (if available)
# ```json
# {json.dumps(test_result.get('response', {}), indent=2)}
# ```
# ---
# *This issue was automatically generated by the Swarms testing workflow.*
# """
# payload = {
# "title": issue_title,
# "body": issue_body,
# "labels": ["bug", "test-failure", "automated-report"],
# }
# try:
# response = requests.post(
# f"{BASE_URL}/repos/{GITHUB_REPO_OWNER}/{GITHUB_REPO_NAME}/issues",
# headers=GITHUB_HEADERS,
# json=payload,
# )
# response.raise_for_status()
# logger.info(f"Created GitHub issue for {test_result['test_name']}")
# return response.json()
# except requests.exceptions.RequestException as e:
# logger.error(f"Failed to create GitHub issue: {e.response.text if e.response else str(e)}")
# return None
# --- Test Cases ---
def test_tool_execution_with_agent():
"""Tests an agent's ability to use a provided tool."""
def simple_calculator(a: int, b: int) -> int:
"""A simple tool to add two numbers."""
return a + b
agent = Agent(
agent_name="CalculatorAgent",
system_prompt="You are an agent that uses a calculator tool.",
llm="gpt-4o",
max_loops=1,
tools=[simple_calculator],
output_type="str-all-except-first"
)
task = "Use the calculator to add 5 and 7."
response = agent.run(task)
# Check if the agent's output contains the expected result '12'.
# This is an indirect way to verify tool use. A more robust test would
# involve checking execution logs if the framework supports it.
assert "12" in response
return {"test_name": "test_tool_execution_with_agent", "status": "passed", "response": response}
def test_multimodal_execution():
"""Tests an agent's ability to process a single image."""
agent = Agent(
agent_name="VisionAgent",
system_prompt="You are an agent that describes images.",
llm="gpt-4o",
max_loops=1,
multi_modal=True
)
task = "Describe this image."
# Assumes a dummy image file is created by the GitHub Action
image_path = "tests/test_data/image1.jpg"
response = agent.run(task, img=image_path)
assert isinstance(response, str) and len(response) > 0
return {"test_name": "test_multimodal_execution", "status": "passed", "response": "Response received"}
def test_multiple_image_execution():
"""Tests an agent's ability to process multiple images."""
agent = Agent(
agent_name="MultiVisionAgent",
system_prompt="You are an agent that describes multiple images.",
llm="gpt-4o",
max_loops=1,
multi_modal=True
)
task = "Describe these two images."
# Assumes dummy image files are created by the GitHub Action
image_paths = ["tests/test_data/image1.jpg", "tests/test_data/image2.png"]
response = agent.run_multiple_images(task, imgs=image_paths)
assert isinstance(response, list) and len(response) == 2
return {"test_name": "test_multiple_image_execution", "status": "passed", "response": "Responses received for both images"}
def test_concurrent_workflow():
"""Tests the ConcurrentWorkflow with multiple agents."""
agents = [
Agent(agent_name="Agent1", llm="gpt-4o", max_loops=1),
Agent(agent_name="Agent2", llm="gpt-4o", max_loops=1)
]
workflow = ConcurrentWorkflow(agents=agents, max_loops=1)
task = "What are two different famous quotes?"
response = workflow.run(task)
assert isinstance(response, dict) and len(response) == 2
return {"test_name": "test_concurrent_workflow", "status": "passed", "response": response}
def test_sequential_workflow():
"""Tests the SequentialWorkflow with multiple agents."""
agents = [
Agent(agent_name="Agent1", system_prompt="Generate a famous quote.", llm="gpt-4o", max_loops=1),
Agent(agent_name="Agent2", system_prompt="Explain the meaning of the provided quote.", llm="gpt-4o", max_loops=1)
]
workflow = SequentialWorkflow(agents=agents, max_loops=1, output_type="final")
task = "Start by generating a quote, then explain it."
response = workflow.run(task)
assert isinstance(response, str) and len(response) > 0
return {"test_name": "test_sequential_workflow", "status": "passed", "response": response}
def test_streaming_and_non_streaming():
"""Tests both streaming and non-streaming modes."""
# Non-streaming
non_streaming_agent = Agent(agent_name="NonStreamer", llm="gpt-4o", max_loops=1, streaming_on=False)
non_streaming_response = non_streaming_agent.run("Tell me a short story.")
assert isinstance(non_streaming_response, str)
# Streaming
streaming_agent = Agent(agent_name="Streamer", llm="gpt-4o", max_loops=1, streaming_on=True)
streaming_response_generator = streaming_agent.run("Tell me a short story.")
full_response = ""
for chunk in streaming_response_generator:
# Check the structure of the chunk from litellm stream
if isinstance(chunk, dict) and 'choices' in chunk and chunk['choices'][0]['delta']['content']:
full_response += chunk['choices'][0]['delta']['content']
# Handle potential other chunk formats if necessary
assert isinstance(full_response, str) and len(full_response) > 0
return {"test_name": "test_streaming_and_non_streaming", "status": "passed", "response": "Both modes executed."}
# --- Test Orchestrator ---
def run_all_tests():
"""Run all tests and generate a report"""
logger.info("Starting Swarms Comprehensive Test Suite")
tests_to_run = [
test_tool_execution_with_agent,
test_multimodal_execution,
test_multiple_image_execution,
test_concurrent_workflow,
test_sequential_workflow,
test_streaming_and_non_streaming,
]
results = []
for test_func in tests_to_run:
test_name = test_func.__name__
try:
logger.info(f"Running test: {test_name}...")
result = test_func()
results.append(result)
logger.info(f"Test {test_name} PASSED.")
except Exception as e:
logger.error(f"Test {test_name} FAILED: {e}")
error_details = {
"test_name": test_name,
"status": "failed",
"error": str(e),
"response": "Test execution failed"
}
results.append(error_details)
# create_github_issue(error_details)
timestamp = generate_timestamp()
write_markdown_report(results, f"test_report_{timestamp}")
# Check for failures and exit with a non-zero code if any test failed
if any(r['status'] == 'failed' for r in results):
logger.error("One or more tests failed. Check the report and logs.")
exit(1)
else:
logger.success("All tests passed successfully!")
if __name__ == "__main__":
if not API_KEY:
logger.error("OPENAI_API_KEY environment variable not set. Aborting tests.")
else:
run_all_tests()
Loading…
Cancel
Save