playground -> swarms in dalle3 tests

Former-commit-id: e5dce12e5ba03be619ed8f2da9d69d6287a546cf
clean-history
Kye 1 year ago
parent 97b09c37f1
commit f6c230e6cc

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "2.3.4"
version = "2.3.5"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]

@ -1,133 +0,0 @@
import pytest
from unittest.mock import Mock, patch
from swarms.tools.agent_tools import *
from swarms.boss.boss_node import BossNodeInitializer, BossNode
# For initializing BossNodeInitializer in multiple tests
@pytest.fixture
def mock_boss_node_initializer():
llm = Mock()
vectorstore = Mock()
agent_executor = Mock()
max_iterations = 5
boss_node_initializer = BossNodeInitializer(
llm, vectorstore, agent_executor, max_iterations
)
return boss_node_initializer
# Test BossNodeInitializer class __init__ method
def test_boss_node_initializer_init(mock_boss_node_initializer):
with patch("swarms.tools.agent_tools.BabyAGI.from_llm") as mock_from_llm:
assert isinstance(mock_boss_node_initializer, BossNodeInitializer)
mock_from_llm.assert_called_once()
# Test initialize_vectorstore method of BossNodeInitializer class
def test_boss_node_initializer_initialize_vectorstore(mock_boss_node_initializer):
with patch("swarms.tools.agent_tools.OpenAIEmbeddings") as mock_embeddings, patch(
"swarms.tools.agent_tools.FAISS"
) as mock_faiss:
result = mock_boss_node_initializer.initialize_vectorstore()
mock_embeddings.assert_called_once()
mock_faiss.assert_called_once()
assert result is not None
# Test initialize_llm method of BossNodeInitializer class
def test_boss_node_initializer_initialize_llm(mock_boss_node_initializer):
with patch("swarms.tools.agent_tools.OpenAI") as mock_llm:
result = mock_boss_node_initializer.initialize_llm(mock_llm)
mock_llm.assert_called_once()
assert result is not None
# Test create_task method of BossNodeInitializer class
@pytest.mark.parametrize("objective", ["valid objective", ""])
def test_boss_node_initializer_create_task(objective, mock_boss_node_initializer):
if objective == "":
with pytest.raises(ValueError):
mock_boss_node_initializer.create_task(objective)
else:
assert mock_boss_node_initializer.create_task(objective) == {
"objective": objective
}
# Test run method of BossNodeInitializer class
@pytest.mark.parametrize("task", ["valid task", ""])
def test_boss_node_initializer_run(task, mock_boss_node_initializer):
with patch.object(mock_boss_node_initializer, "baby_agi"):
if task == "":
with pytest.raises(ValueError):
mock_boss_node_initializer.run(task)
else:
try:
mock_boss_node_initializer.run(task)
mock_boss_node_initializer.baby_agi.assert_called_once_with(task)
except Exception:
pytest.fail("Unexpected Error!")
# Test BossNode function
@pytest.mark.parametrize(
"api_key, objective, llm_class, max_iterations",
[
("valid_key", "valid_objective", OpenAI, 5),
("", "valid_objective", OpenAI, 5),
("valid_key", "", OpenAI, 5),
("valid_key", "valid_objective", "", 5),
("valid_key", "valid_objective", OpenAI, 0),
],
)
def test_boss_node(api_key, objective, llm_class, max_iterations):
with patch("os.getenv") as mock_getenv, patch(
"swarms.tools.agent_tools.PromptTemplate.from_template"
) as mock_from_template, patch(
"swarms.tools.agent_tools.LLMChain"
) as mock_llm_chain, patch(
"swarms.tools.agent_tools.ZeroShotAgent.create_prompt"
) as mock_create_prompt, patch(
"swarms.tools.agent_tools.ZeroShotAgent"
) as mock_zero_shot_agent, patch(
"swarms.tools.agent_tools.AgentExecutor.from_agent_and_tools"
) as mock_from_agent_and_tools, patch(
"swarms.tools.agent_tools.BossNodeInitializer"
) as mock_boss_node_initializer, patch.object(
mock_boss_node_initializer, "create_task"
) as mock_create_task, patch.object(
mock_boss_node_initializer, "run"
) as mock_run:
if api_key == "" or objective == "" or llm_class == "" or max_iterations <= 0:
with pytest.raises(ValueError):
BossNode(
objective,
api_key,
vectorstore=None,
worker_node=None,
llm_class=llm_class,
max_iterations=max_iterations,
verbose=False,
)
else:
mock_getenv.return_value = "valid_key"
BossNode(
objective,
api_key,
vectorstore=None,
worker_node=None,
llm_class=llm_class,
max_iterations=max_iterations,
verbose=False,
)
mock_from_template.assert_called_once()
mock_llm_chain.assert_called_once()
mock_create_prompt.assert_called_once()
mock_zero_shot_agent.assert_called_once()
mock_from_agent_and_tools.assert_called_once()
mock_boss_node_initializer.assert_called_once()
mock_create_task.assert_called_once()
mock_run.assert_called_once()

@ -1,83 +0,0 @@
import pytest
from swarms.chunkers.base import (
BaseChunker,
TextArtifact,
ChunkSeparator,
OpenAITokenizer,
) # adjust the import paths accordingly
# 1. Test Initialization
def test_chunker_initialization():
chunker = BaseChunker()
assert isinstance(chunker, BaseChunker)
assert chunker.max_tokens == chunker.tokenizer.max_tokens
def test_default_separators():
chunker = BaseChunker()
assert chunker.separators == BaseChunker.DEFAULT_SEPARATORS
def test_default_tokenizer():
chunker = BaseChunker()
assert isinstance(chunker.tokenizer, OpenAITokenizer)
# 2. Test Basic Chunking
@pytest.mark.parametrize(
"input_text, expected_output",
[
("This is a test.", [TextArtifact("This is a test.")]),
("Hello World!", [TextArtifact("Hello World!")]),
# Add more simple cases
],
)
def test_basic_chunk(input_text, expected_output):
chunker = BaseChunker()
result = chunker.chunk(input_text)
assert result == expected_output
# 3. Test Chunking with Different Separators
def test_custom_separators():
custom_separator = ChunkSeparator(";")
chunker = BaseChunker(separators=[custom_separator])
input_text = "Hello;World!"
expected_output = [TextArtifact("Hello;"), TextArtifact("World!")]
result = chunker.chunk(input_text)
assert result == expected_output
# 4. Test Recursive Chunking
def test_recursive_chunking():
chunker = BaseChunker(max_tokens=5)
input_text = "This is a more complex text."
expected_output = [
TextArtifact("This"),
TextArtifact("is a"),
TextArtifact("more"),
TextArtifact("complex"),
TextArtifact("text."),
]
result = chunker.chunk(input_text)
assert result == expected_output
# 5. Test Edge Cases and Special Scenarios
def test_empty_text():
chunker = BaseChunker()
result = chunker.chunk("")
assert result == []
def test_whitespace_text():
chunker = BaseChunker()
result = chunker.chunk(" ")
assert result == [TextArtifact(" ")]
def test_single_word():
chunker = BaseChunker()
result = chunker.chunk("Hello")
assert result == [TextArtifact("Hello")]

@ -6,7 +6,7 @@ from openai import OpenAIError
from PIL import Image
from termcolor import colored
from playground.models.dalle3 import Dalle3
from swarms.models.dalle3 import Dalle3
# Mocking the OpenAI client to avoid making actual API calls during testing

Loading…
Cancel
Save