Former-commit-id: f78d67bd29
group-chat
Kye 1 year ago
parent 9aa167c0cd
commit f847cea907

@ -1,251 +1 @@
#this is copied and pasted from exa, https://github.com/kyegomez/Exa
import logging
import torch
from torch.multiprocessing import set_start_method
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
GPTQConfig,
)
#set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class HFLLM:
"""
A class for running inference on a given model.
Attributes:
model_id (str): The ID of the model.
device (str): The device to run the model on (either 'cuda' or 'cpu').
max_length (int): The maximum length of the output sequence.
"""
def __init__(
self,
model_id: str,
device: str = None,
max_length: int = 20,
quantize: bool = False,
quantization_config: dict = None,
verbose = False,
# logger=None,
distributed=False,
decoding=False
):
"""
Initialize the Inference object.
Args:
model_id (str): The ID of the model.
device (str, optional): The device to run the model on. Defaults to 'cuda' if available.
max_length (int, optional): The maximum length of the output sequence. Defaults to 20.
quantize (bool, optional): Whether to use quantization. Defaults to False.
quantization_config (dict, optional): The configuration for quantization.
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
"""
self.logger = logging.getLogger(__name__)
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
if self.distributed:
assert torch.cuda.device_count() > 1, "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
if not quantization_config:
quantization_config = {
'load_in_4bit': True,
'bnb_4bit_use_double_quant': True,
'bnb_4bit_quant_type': "nf4",
'bnb_4bit_compute_dtype': torch.bfloat16
}
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config
)
self.model#.to(self.device)
except Exception as e:
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
raise
def load_model(self):
if not self.model or not self.tokenizer:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
bnb_config = BitsAndBytesConfig(
**self.quantization_config
) if self.quantization_config else None
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(
self,
prompt_text: str,
max_length: int = None
):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = max_length if max_length else self.max_length
try:
inputs = self.tokenizer.encode(
prompt_text,
return_tensors="pt"
).to(self.device)
if self.decoding:
with torch.no_grad():
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(
inputs,
max_length=len(inputs) + 1,
do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
#print token in real-time
print(self.tokenizer.decode(
[output_tokens],
skip_special_tokens=True),
end="",
flush=True
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_length=max_length,
do_sample=True
)
del inputs
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
class GPTQInference:
def __init__(
self,
model_id,
quantization_config_bits,
quantization_config_dataset,
max_length,
verbose = False,
distributed = False,
):
self.model_id = model_id
self.quantization_config_bits = quantization_config_bits
self.quantization_config_dataset = quantization_config_dataset
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
if self.distributed:
assert torch.cuda.device_count() > 1, "You need more than 1 gpu for distributed processing"
set_start_method("spawn", force=True)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.quantization_config = GPTQConfig(
bits=self.quantization_config_bits,
dataset=quantization_config_dataset,
tokenizer=self.tokenizer
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
device_map="auto",
quantization_config=self.quantization_config
).to(self.device)
if self.distributed:
self.model = DDP(
self.model,
device_ids=[0],
output_device=0,
)
logger.info(f"Model loaded from {self.model_id} on {self.device}")
def run(
self,
prompt: str,
max_length: int = 500,
):
max_length = self.max_length or max_length
try:
inputs = self.tokenizer.encode(
prompt,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_length=max_length,
do_sample=True
)
return self.tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
except Exception as error:
print(f"Error: {error} in inference mode, please change the inference logic or try again")
raise
def __del__(self):
#free up resources
torch.cuda.empty_cache()
from exa import Inference, GPTQInference, Mult
Loading…
Cancel
Save