diff --git a/docs/swarms/structs/taskqueue_swarm.md b/docs/swarms/structs/taskqueue_swarm.md new file mode 100644 index 00000000..61f9b56f --- /dev/null +++ b/docs/swarms/structs/taskqueue_swarm.md @@ -0,0 +1,93 @@ +# TaskQueueSwarm Documentation + +The `TaskQueueSwarm` class is designed to manage and execute tasks using multiple agents concurrently. This class allows for the orchestration of multiple agents processing tasks from a shared queue, facilitating complex workflows where tasks can be distributed and processed in parallel by different agents. + +## Attributes + +| Attribute | Type | Description | +|-----------|------|-------------| +| `agents` | `List[Agent]` | The list of agents in the swarm. | +| `task_queue` | `queue.Queue` | A queue to store tasks for processing. | +| `lock` | `threading.Lock` | A lock for thread synchronization. | +| `autosave_on` | `bool` | Whether to automatically save the swarm metadata. | +| `save_file_path` | `str` | The file path for saving swarm metadata. | +| `workspace_dir` | `str` | The directory path of the workspace. | +| `return_metadata_on` | `bool` | Whether to return the swarm metadata after running. | +| `max_loops` | `int` | The maximum number of loops to run the swarm. | +| `metadata` | `SwarmRunMetadata` | Metadata about the swarm run. | + +## Methods + +### `__init__(self, agents: List[Agent], name: str = "Task-Queue-Swarm", description: str = "A swarm that processes tasks from a queue using multiple agents on different threads.", autosave_on: bool = True, save_file_path: str = "swarm_run_metadata.json", workspace_dir: str = os.getenv("WORKSPACE_DIR"), return_metadata_on: bool = False, max_loops: int = 1, *args, **kwargs)` + +The constructor initializes the `TaskQueueSwarm` object. + +- **Parameters:** + - `agents` (`List[Agent]`): The list of agents in the swarm. + - `name` (`str`, optional): The name of the swarm. Defaults to "Task-Queue-Swarm". + - `description` (`str`, optional): The description of the swarm. Defaults to "A swarm that processes tasks from a queue using multiple agents on different threads.". + - `autosave_on` (`bool`, optional): Whether to automatically save the swarm metadata. Defaults to True. + - `save_file_path` (`str`, optional): The file path to save the swarm metadata. Defaults to "swarm_run_metadata.json". + - `workspace_dir` (`str`, optional): The directory path of the workspace. Defaults to os.getenv("WORKSPACE_DIR"). + - `return_metadata_on` (`bool`, optional): Whether to return the swarm metadata after running. Defaults to False. + - `max_loops` (`int`, optional): The maximum number of loops to run the swarm. Defaults to 1. + - `*args`: Variable length argument list. + - `**kwargs`: Arbitrary keyword arguments. + +### `add_task(self, task: str)` + +Adds a task to the queue. + +- **Parameters:** + - `task` (`str`): The task to be added to the queue. + +### `run(self)` + +Runs the swarm by having agents pick up tasks from the queue. + +- **Returns:** + - `str`: JSON string of the swarm run metadata if `return_metadata_on` is True. + +- **Usage Example:** + ```python + from swarms import Agent, TaskQueueSwarm + from swarms.models import OpenAIChat + + # Initialize the language model + llm = OpenAIChat() + + # Initialize agents + agent1 = Agent(agent_name="Agent1", llm=llm) + agent2 = Agent(agent_name="Agent2", llm=llm) + + # Create the TaskQueueSwarm + swarm = TaskQueueSwarm(agents=[agent1, agent2], max_loops=5) + + # Add tasks to the swarm + swarm.add_task("Analyze the latest market trends") + swarm.add_task("Generate a summary report") + + # Run the swarm + result = swarm.run() + print(result) # Prints the swarm run metadata + ``` + + This example initializes a `TaskQueueSwarm` with two agents, adds tasks to the queue, and runs the swarm. + +### `save_json_to_file(self)` + +Saves the swarm run metadata to a JSON file. + +### `export_metadata(self)` + +Exports the swarm run metadata as a JSON string. + +- **Returns:** + - `str`: JSON string of the swarm run metadata. + +## Additional Notes + +- The `TaskQueueSwarm` uses threading to process tasks concurrently, which can significantly improve performance for I/O-bound tasks. +- The `reliability_checks` method ensures that the swarm is properly configured before running. +- The swarm automatically handles task distribution among agents and provides detailed metadata about the run. +- Error handling and logging are implemented to track the execution flow and capture any issues during task processing.