diff --git a/docs/swarms/install/quickstart.md b/docs/swarms/install/quickstart.md index 24aab047..0b0df39d 100644 --- a/docs/swarms/install/quickstart.md +++ b/docs/swarms/install/quickstart.md @@ -322,11 +322,20 @@ graph TD; ```python from swarms import Agent, SequentialWorkflow -from swarm_models import Anthropic -# Initialize agents -agent1 = Agent(agent_name="Blog generator", system_prompt="Generate a blog post", llm=Anthropic(), max_loops=1) -agent2 = Agent(agent_name="Summarizer", system_prompt="Summarize the blog post", llm=Anthropic(), max_loops=1) +# Initialize agents without importing a specific LLM class +agent1 = Agent( + agent_name="Blog generator", + system_prompt="Generate a blog post", + model_name="claude-3-sonnet-20240229", + max_loops=1 +) +agent2 = Agent( + agent_name="Summarizer", + system_prompt="Summarize the blog post", + model_name="claude-3-sonnet-20240229", + max_loops=1 +) # Create Sequential workflow workflow = SequentialWorkflow(agents=[agent1, agent2], max_loops=1) @@ -356,23 +365,37 @@ graph TD; ```python from swarms import Agent, AgentRearrange -from swarm_models import Anthropic -# Initialize agents -director = Agent(agent_name="Director", system_prompt="Directs tasks", llm=Anthropic(), max_loops=1) -worker1 = Agent(agent_name="Worker1", system_prompt="Generate a transcript", llm=Anthropic(), max_loops=1) -worker2 = Agent(agent_name="Worker2", system_prompt="Summarize the transcript", llm=Anthropic(), max_loops=1) +# Initialize agents using model_name (no explicit LLM import) +director = Agent( + agent_name="Director", + system_prompt="Directs tasks", + model_name="claude-3-sonnet-20240229", + max_loops=1 +) +worker1 = Agent( + agent_name="Worker1", + system_prompt="Generate a transcript", + model_name="claude-3-sonnet-20240229", + max_loops=1 +) +worker2 = Agent( + agent_name="Worker2", + system_prompt="Summarize the transcript", + model_name="claude-3-sonnet-20240229", + max_loops=1 +) -# Define agent relationships and workflow +# Define the flow and create the rearranged system flow = "Director -> Worker1 -> Worker2" agent_system = AgentRearrange(agents=[director, worker1, worker2], flow=flow) -# Run agent system +# Run it output = agent_system.run("Create a YouTube transcript and summary") print(output) ``` ---- + --- @@ -429,21 +452,49 @@ graph TD; ```python from swarms import Agent -from swarm_models import OpenAIChat from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm -import os -# Initialize agents for different marketing platforms +# Initialize agents for different marketing platforms using model_name agents = [ - Agent(agent_name="Twitter Agent", system_prompt="Create a tweet", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1), - Agent(agent_name="Instagram Agent", system_prompt="Create an Instagram post", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1), - Agent(agent_name="Facebook Agent", system_prompt="Create a Facebook post", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1), - Agent(agent_name="LinkedIn Agent", system_prompt="Create a LinkedIn post", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1), - Agent(agent_name="Email Agent", system_prompt="Write a marketing email", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1), + Agent( + agent_name="Twitter Agent", + system_prompt="Create a tweet", + model_name="gpt-4o-mini", + max_loops=1 + ), + Agent( + agent_name="Instagram Agent", + system_prompt="Create an Instagram post", + model_name="gpt-4o-mini", + max_loops=1 + ), + Agent( + agent_name="Facebook Agent", + system_prompt="Create a Facebook post", + model_name="gpt-4o-mini", + max_loops=1 + ), + Agent( + agent_name="LinkedIn Agent", + system_prompt="Create a LinkedIn post", + model_name="gpt-4o-mini", + max_loops=1 + ), + Agent( + agent_name="Email Agent", + system_prompt="Write a marketing email", + model_name="gpt-4o-mini", + max_loops=1 + ), ] # Create the Spreadsheet Swarm -swarm = SpreadSheetSwarm(agents=agents, save_file_path="real_estate_marketing_spreadsheet.csv", run_all_agents=False, max_loops=2) +swarm = SpreadSheetSwarm( + agents=agents, + save_file_path="real_estate_marketing_spreadsheet.csv", + run_all_agents=False, + max_loops=2 +) # Run the swarm swarm.run("Create posts to promote luxury properties in North Texas.")