workernode documentation

pull/39/head
Kye 1 year ago
parent 0d245f98a1
commit fbeefa140b

@ -61,7 +61,7 @@ from swarms.agents import vectorstore, tool, Agent
# Create an instance of the Agent class
agent = Agent(
llm=HuggingFaceLLM,
llm=huggingface,
memory=vectorstore,
tools=tool,
)
@ -72,5 +72,4 @@ agent.run("Make me an instagram clone")
In conclusion, the Agents in Swarms represent a new way of thinking about AI. They are simple, modular, and highly customizable, allowing you to create powerful AI systems that are more than the sum of their parts. And as always, we're just getting started. There's always room for improvement, for simplification, for making things even better. That's the spirit of open collaboration. That's the spirit of Swarms.
Thanks for becoming an alpha build user, email kye@apac.ai with all complaints
Thanks for becoming an alpha build user, email kye@apac.ai with all complaints.

@ -0,0 +1,275 @@
Swarms Documentation
====================
Worker Node
-----------
The `WorkerNode` class is a powerful component of the Swarms framework. It is designed to spawn an autonomous agent instance as a worker to accomplish complex tasks. It can search the internet, spawn child multi-modality models to process and generate images, text, audio, and so on.
### WorkerNodeInitializer
The `WorkerNodeInitializer` class is used to initialize a worker node.
#### Initialization
```
WorkerNodeInitializer(openai_api_key: str,
llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,
tools: Optional[List[Tool]] = None,
worker_name: Optional[str] = "Swarm Worker AI Assistant",
worker_role: Optional[str] = "Assistant",
human_in_the_loop: Optional[bool] = False,
search_kwargs: dict = {},
verbose: Optional[bool] = False,
chat_history_file: str = "chat_history.txt")
```
Copy code
##### Parameters
- `openai_api_key` (str): The OpenAI API key.
- `llm` (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is `ChatOpenAI`.
- `tools` (List[Tool], optional): The tools to use.
- `worker_name` (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant".
- `worker_role` (str, optional): The role of the worker. Default is "Assistant".
- `human_in_the_loop` (bool, optional): Whether to include a human in the loop. Default is False.
- `search_kwargs` (dict, optional): The keyword arguments for the search.
- `verbose` (bool, optional): Whether to print verbose output. Default is False.
- `chat_history_file` (str, optional): The file to store the chat history. Default is "chat_history.txt".
##### Example
```
from swarms.agents.tools.autogpt import DuckDuckGoSearchRun
worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key",
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
```
Copy code
### WorkerNode
The `WorkerNode` class is used to create a worker node.
#### Initialization
```
WorkerNode(openai_api_key: str,
temperature: int,
llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,
tools: Optional[List[Tool]] = None,
worker_name: Optional[str] = "Swarm Worker AI Assistant",
worker_role: Optional[str] = "Assistant",
human_in_the_loop: Optional[bool] = False,
search_kwargs: dict = {},
verbose: Optional[bool] = False,
chat_history_file: str = "chat_history.txt")
```
Copy code
##### Parameters
- `openai_api_key` (str): The OpenAI API key.
- `temperature` (int): The temperature for the language model.
- `llm` (Union[InMemoryDocstore, ChatOpenAI], optional): The language model to use. Default is `ChatOpenAI`.
- `tools` (List[Tool], optional): The tools to use.
- `worker_name` (str, optional): The name of the worker. Default is "Swarm Worker AI Assistant".
- `worker_role` (str, optional): The role of the worker. Default is "Assistant".
- `human_in_the_loop` (bool, optional): Whether to include a human in the loop. Default is False.
- `search_kwargs` (dict, optional): The keyword arguments for the search.
- `verbose` (bool, optional): Whether to print verbose output. Default is False.
- `chat_history_file` (str, optional): The file to store the chat history. Default is "chat_history.txt".
##### Example
```
worker_node = WorkerNode(openai_api_key="your_openai_api_key",
temperature=0.8,
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="As```
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Create a worker node
worker_node = WorkerNode(openai_api_key="your_openai_api_key",
temperature=0.8,
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Add a tool to the worker node
worker_node_initializer.add_tool(DuckDuckGoSearchRun())
# Initialize the language model and tools for the worker node
worker_node.initialize_llm(ChatOpenAI, temperature=0.8)
worker_node.initialize_tools(ChatOpenAI)
# Create the worker node
worker_node.create_worker_node(worker_name="My Worker Node",
worker_role="Assistant",
human_in_the_loop=True,
llm_class=ChatOpenAI,
search_kwargs={})
# Run the worker node
`worker_node.run("Hello, world!")`
In this example, we first initialize a `WorkerNodeInitializer` and a `WorkerNode`. We then add a tool to the `WorkerNodeInitializer` and initialize the language model and tools for the `WorkerNode`. Finally, we create the worker node and run it with a given prompt.
This example shows how you can use the `WorkerNode` and `WorkerNodeInitializer` classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs.
Thanks for becoming an alpha build user, email kye@apac.ai with all complaintssistant",
human_in_the_loop=True)
```
Copy code
### Full Example
Here is a full example of how to use the `WorkerNode` and `WorkerNodeInitializer` classes:
```python
from swarms.agents.tools.autogpt import DuckDuckGoSearchRun
from swarms.worker_node import WorkerNode, WorkerNodeInitializer
# Initialize a worker node
worker_node_initializer = WorkerNodeInitializer(openai_api_key="your_openai_api_key",
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Create a worker node
worker_node = WorkerNode(openai_api_key="your_openai_api_key",
temperature=0.8,
tools=[DuckDuckGoSearchRun()],
worker_name="My Worker",
worker_role="Assistant",
human_in_the_loop=True)
# Add a tool to the worker node
worker_node_initializer.add_tool(DuckDuckGoSearchRun())
# Initialize the language model and tools for the worker node
worker_node.initialize_llm(ChatOpenAI, temperature=0.8)
worker_node.initialize_tools(ChatOpenAI)
# Create the worker node
worker_node.create_worker_node(worker_name="My Worker Node",
worker_role="Assistant",
human_in_the_loop=True,
llm_class=ChatOpenAI,
search_kwargs={})
# Run the worker node
worker_node.run("Hello, world!")
```
In this example, we first initialize a `WorkerNodeInitializer` and a `WorkerNode`. We then add a tool to the `WorkerNodeInitializer` and initialize the language model and tools for the `WorkerNode`. Finally, we create the worker node and run it with a given prompt.
This example shows how you can use the `WorkerNode` and `WorkerNodeInitializer` classes to create a worker node, add tools to it, initialize its language model and tools, and run it with a given prompt. The parameters of these classes can be customized to suit your specific needs.

@ -0,0 +1,512 @@
from __future__ import annotations
import logging
import warnings
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import numpy as np
from pydantic import BaseModel, Extra, Field, root_validator
from tenacity import (
AsyncRetrying,
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
logger = logging.getLogger(__name__)
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
async_retrying = AsyncRetrying(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
raise AssertionError("this is unreachable")
return wrapped_f
return wrap
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict) -> dict:
if any(len(d["embedding"]) == 1 for d in response["data"]):
import openai
raise openai.error.APIError("OpenAI API returned an empty embedding")
return response
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
response = embeddings.client.create(**kwargs)
return _check_response(response)
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
return _check_response(response)
return await _async_embed_with_retry(**kwargs)
class OpenAIEmbeddings(BaseModel, Embeddings):
"""OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = model # to support Azure OpenAI Service custom deployment names
openai_api_version: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_base: Optional[str] = None
# to support Azure OpenAI Service custom endpoints
openai_api_type: Optional[str] = None
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
allowed_special: Union[Literal["all"], Set[str]] = set()
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
"""Timeout in seconds for the OpenAPI request."""
headers: Any = None
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
show_progress_bar: bool = False
"""Whether to show a progress bar when embedding."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
default_api_version = "2022-12-01"
else:
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
values["client"] = openai.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def _invocation_params(self) -> Dict:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
openai_args["engine"] = self.deployment
if self.openai_proxy:
import openai
openai.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
if self.show_progress_bar:
try:
import tqdm
_iter = tqdm.tqdm(range(0, len(tokens), _chunk_size))
except ImportError:
_iter = range(0, len(tokens), _chunk_size)
else:
_iter = range(0, len(tokens), _chunk_size)
for i in _iter:
response = embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = embed_with_retry(
self,
input="",
**self._invocation_params,
)[
"data"
][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
async def _aget_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: List[List[float]] = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = await async_embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(r["embedding"] for r in response["data"])
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = (
await async_embed_with_retry(
self,
input="",
**self._invocation_params,
)
)["data"][0]["embedding"]
else:
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return self._get_len_safe_embeddings(texts, engine=self.deployment)
async def aembed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return await self._aget_len_safe_embeddings(texts, engine=self.deployment)
def embed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
return self.embed_documents([text])[0]
async def aembed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]
Loading…
Cancel
Save