parent
f6baddecd3
commit
ffd2643095
@ -0,0 +1,299 @@
|
||||
import gradio as gr
|
||||
from swarms.tools.tools_controller import MTQuestionAnswerer, load_valid_tools
|
||||
from swarms.tools.singletool import STQuestionAnswerer
|
||||
from langchain.schema import AgentFinish
|
||||
import os
|
||||
import requests
|
||||
|
||||
from tool_server import run_tool_server
|
||||
from threading import Thread
|
||||
from multiprocessing import Process
|
||||
import time
|
||||
|
||||
tool_server_flag = False
|
||||
def start_tool_server():
|
||||
# server = Thread(target=run_tool_server)
|
||||
server = Process(target=run_tool_server)
|
||||
server.start()
|
||||
global tool_server_flag
|
||||
tool_server_flag = True
|
||||
|
||||
|
||||
available_models = ["ChatGPT", "GPT-3.5"]
|
||||
DEFAULTMODEL = "ChatGPT" # "GPT-3.5"
|
||||
|
||||
tools_mappings = {
|
||||
"klarna": "https://www.klarna.com/",
|
||||
"weather": "http://127.0.0.1:8079/tools/weather/",
|
||||
# "database": "http://127.0.0.1:8079/tools/database/",
|
||||
# "db_diag": "http://127.0.0.1:8079/tools/db_diag/",
|
||||
"chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
|
||||
"douban-film": "http://127.0.0.1:8079/tools/douban-film/",
|
||||
"wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
|
||||
# "wikidata": "http://127.0.0.1:8079/tools/kg/wikidata/",
|
||||
"wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
|
||||
"bing_search": "http://127.0.0.1:8079/tools/bing_search/",
|
||||
"office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
|
||||
"stock": "http://127.0.0.1:8079/tools/stock/",
|
||||
"bing_map": "http://127.0.0.1:8079/tools/map.bing_map/",
|
||||
# "baidu_map": "http://127.0.0.1:8079/tools/map/baidu_map/",
|
||||
"zillow": "http://127.0.0.1:8079/tools/zillow/",
|
||||
"airbnb": "http://127.0.0.1:8079/tools/airbnb/",
|
||||
"job_search": "http://127.0.0.1:8079/tools/job_search/",
|
||||
# "baidu-translation": "http://127.0.0.1:8079/tools/translation/baidu-translation/",
|
||||
# "nllb-translation": "http://127.0.0.1:8079/tools/translation/nllb-translation/",
|
||||
"tutorial": "http://127.0.0.1:8079/tools/tutorial/",
|
||||
"file_operation": "http://127.0.0.1:8079/tools/file_operation/",
|
||||
"meta_analysis": "http://127.0.0.1:8079/tools/meta_analysis/",
|
||||
"code_interpreter": "http://127.0.0.1:8079/tools/code_interpreter/",
|
||||
"arxiv": "http://127.0.0.1:8079/tools/arxiv/",
|
||||
"google_places": "http://127.0.0.1:8079/tools/google_places/",
|
||||
"google_serper": "http://127.0.0.1:8079/tools/google_serper/",
|
||||
"google_scholar": "http://127.0.0.1:8079/tools/google_scholar/",
|
||||
"python": "http://127.0.0.1:8079/tools/python/",
|
||||
"sceneXplain": "http://127.0.0.1:8079/tools/sceneXplain/",
|
||||
"shell": "http://127.0.0.1:8079/tools/shell/",
|
||||
"image_generation": "http://127.0.0.1:8079/tools/image_generation/",
|
||||
"hugging_tools": "http://127.0.0.1:8079/tools/hugging_tools/",
|
||||
"gradio_tools": "http://127.0.0.1:8079/tools/gradio_tools/",
|
||||
"travel": "http://127.0.0.1:8079/tools/travel",
|
||||
"walmart": "http://127.0.0.1:8079/tools/walmart",
|
||||
}
|
||||
|
||||
valid_tools_info = []
|
||||
all_tools_list = []
|
||||
|
||||
gr.close_all()
|
||||
|
||||
MAX_TURNS = 30
|
||||
MAX_BOXES = MAX_TURNS * 2
|
||||
|
||||
return_msg = []
|
||||
chat_history = ""
|
||||
|
||||
MAX_SLEEP_TIME = 40
|
||||
def load_tools():
|
||||
global valid_tools_info
|
||||
global all_tools_list
|
||||
try:
|
||||
valid_tools_info = load_valid_tools(tools_mappings)
|
||||
except BaseException as e:
|
||||
print(repr(e))
|
||||
all_tools_list = sorted(list(valid_tools_info.keys()))
|
||||
return gr.update(choices=all_tools_list)
|
||||
|
||||
def set_environ(OPENAI_API_KEY: str,
|
||||
WOLFRAMALPH_APP_ID: str = "",
|
||||
WEATHER_API_KEYS: str = "",
|
||||
BING_SUBSCRIPT_KEY: str = "",
|
||||
ALPHA_VANTAGE_KEY: str = "",
|
||||
BING_MAP_KEY: str = "",
|
||||
BAIDU_TRANSLATE_KEY: str = "",
|
||||
RAPIDAPI_KEY: str = "",
|
||||
SERPER_API_KEY: str = "",
|
||||
GPLACES_API_KEY: str = "",
|
||||
SCENEX_API_KEY: str = "",
|
||||
STEAMSHIP_API_KEY: str = "",
|
||||
HUGGINGFACE_API_KEY: str = "",
|
||||
AMADEUS_ID: str = "",
|
||||
AMADEUS_KEY: str = "",):
|
||||
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
||||
os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
|
||||
os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
|
||||
os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
|
||||
os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
|
||||
os.environ["BING_MAP_KEY"] = BING_MAP_KEY
|
||||
os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
|
||||
os.environ["RAPIDAPI_KEY"] = RAPIDAPI_KEY
|
||||
os.environ["SERPER_API_KEY"] = SERPER_API_KEY
|
||||
os.environ["GPLACES_API_KEY"] = GPLACES_API_KEY
|
||||
os.environ["SCENEX_API_KEY"] = SCENEX_API_KEY
|
||||
os.environ["STEAMSHIP_API_KEY"] = STEAMSHIP_API_KEY
|
||||
os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY
|
||||
os.environ["AMADEUS_ID"] = AMADEUS_ID
|
||||
os.environ["AMADEUS_KEY"] = AMADEUS_KEY
|
||||
if not tool_server_flag:
|
||||
start_tool_server()
|
||||
time.sleep(MAX_SLEEP_TIME)
|
||||
return gr.update(value="OK!")
|
||||
|
||||
def show_avatar_imgs(tools_chosen):
|
||||
if len(tools_chosen) == 0:
|
||||
tools_chosen = list(valid_tools_info.keys())
|
||||
img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
|
||||
imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
|
||||
imgs = ' '.join([img_template.format(img, img, tool) for img, tool in zip(imgs, tools_chosen)])
|
||||
return [gr.update(value='<span class="">' + imgs + '</span>', visible=True), gr.update(visible=True)]
|
||||
|
||||
def answer_by_tools(question, tools_chosen, model_chosen):
|
||||
global return_msg
|
||||
return_msg += [(question, None), (None, '...')]
|
||||
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
|
||||
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
|
||||
|
||||
if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
|
||||
tools_chosen = list(valid_tools_info.keys())
|
||||
|
||||
if len(tools_chosen) == 1:
|
||||
answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
|
||||
agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]],
|
||||
prompt_type="react-with-tool-description", return_intermediate_steps=True)
|
||||
else:
|
||||
answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(),
|
||||
load_valid_tools({k: tools_mappings[k] for k in tools_chosen}),
|
||||
stream_output=True, llm=model_chosen)
|
||||
|
||||
agent_executor = answerer.build_runner()
|
||||
|
||||
global chat_history
|
||||
chat_history += "Question: " + question + "\n"
|
||||
question = chat_history
|
||||
for inter in agent_executor(question):
|
||||
if isinstance(inter, AgentFinish): continue
|
||||
result_str = []
|
||||
return_msg.pop()
|
||||
if isinstance(inter, dict):
|
||||
result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
|
||||
chat_history += "Answer:" + inter['output'] + "\n"
|
||||
result_str.append("...")
|
||||
else:
|
||||
try:
|
||||
not_observation = inter[0].log
|
||||
except:
|
||||
print(inter[0])
|
||||
not_observation = inter[0]
|
||||
if not not_observation.startswith('Thought:'):
|
||||
not_observation = "Thought: " + not_observation
|
||||
chat_history += not_observation
|
||||
not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
|
||||
not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
|
||||
not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
|
||||
result_str.append("{}".format(not_observation))
|
||||
result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
|
||||
chat_history += "\nAction output:" + inter[1] + "\n"
|
||||
result_str.append("...")
|
||||
return_msg += [(None, result) for result in result_str]
|
||||
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
|
||||
return_msg.pop()
|
||||
if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
|
||||
return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ",
|
||||
"<font color=green>Final Answer:</font> "))
|
||||
yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
|
||||
|
||||
|
||||
def retrieve(tools_search):
|
||||
if tools_search == "":
|
||||
return gr.update(choices=all_tools_list)
|
||||
else:
|
||||
url = "http://127.0.0.1:8079/retrieve"
|
||||
param = {
|
||||
"query": tools_search
|
||||
}
|
||||
response = requests.post(url, json=param)
|
||||
result = response.json()
|
||||
retrieved_tools = result["tools"]
|
||||
return gr.update(choices=retrieved_tools)
|
||||
|
||||
|
||||
def clear_retrieve():
|
||||
return [gr.update(value=""), gr.update(choices=all_tools_list)]
|
||||
|
||||
|
||||
def clear_history():
|
||||
global return_msg
|
||||
global chat_history
|
||||
return_msg = []
|
||||
chat_history = ""
|
||||
yield gr.update(visible=True, value=return_msg)
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
with gr.Row():
|
||||
with gr.Column(scale=14):
|
||||
gr.Markdown("<h1 align='left'> Swarm Tools </h1>")
|
||||
with gr.Column(scale=1):
|
||||
gr.Image(show_label=False, show_download_button=False, value="images/swarmslogobanner.png")
|
||||
|
||||
with gr.Tab("Key setting"):
|
||||
OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
|
||||
WOLFRAMALPH_APP_ID = gr.Textbox(label="Wolframalpha app id:", placeholder="Key to use wlframalpha", type="text")
|
||||
WEATHER_API_KEYS = gr.Textbox(label="Weather api key:", placeholder="Key to use weather api", type="text")
|
||||
BING_SUBSCRIPT_KEY = gr.Textbox(label="Bing subscript key:", placeholder="Key to use bing search", type="text")
|
||||
ALPHA_VANTAGE_KEY = gr.Textbox(label="Stock api key:", placeholder="Key to use stock api", type="text")
|
||||
BING_MAP_KEY = gr.Textbox(label="Bing map key:", placeholder="Key to use bing map", type="text")
|
||||
BAIDU_TRANSLATE_KEY = gr.Textbox(label="Baidu translation key:", placeholder="Key to use baidu translation", type="text")
|
||||
RAPIDAPI_KEY = gr.Textbox(label="Rapidapi key:", placeholder="Key to use zillow, airbnb and job search", type="text")
|
||||
SERPER_API_KEY = gr.Textbox(label="Serper key:", placeholder="Key to use google serper and google scholar", type="text")
|
||||
GPLACES_API_KEY = gr.Textbox(label="Google places key:", placeholder="Key to use google places", type="text")
|
||||
SCENEX_API_KEY = gr.Textbox(label="Scenex api key:", placeholder="Key to use sceneXplain", type="text")
|
||||
STEAMSHIP_API_KEY = gr.Textbox(label="Steamship api key:", placeholder="Key to use image generation", type="text")
|
||||
HUGGINGFACE_API_KEY = gr.Textbox(label="Huggingface api key:", placeholder="Key to use models in huggingface hub", type="text")
|
||||
AMADEUS_ID = gr.Textbox(label="Amadeus id:", placeholder="Id to use Amadeus", type="text")
|
||||
AMADEUS_KEY = gr.Textbox(label="Amadeus key:", placeholder="Key to use Amadeus", type="text")
|
||||
key_set_btn = gr.Button(value="Set keys!")
|
||||
|
||||
|
||||
with gr.Tab("Chat with Tool"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=4):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=0.85):
|
||||
txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.",
|
||||
lines=1).style(container=False)
|
||||
with gr.Column(scale=0.15, min_width=0):
|
||||
buttonChat = gr.Button("Chat")
|
||||
|
||||
chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)
|
||||
buttonClear = gr.Button("Clear History")
|
||||
buttonStop = gr.Button("Stop", visible=False)
|
||||
|
||||
with gr.Column(scale=1):
|
||||
model_chosen = gr.Dropdown(
|
||||
list(available_models), value=DEFAULTMODEL, multiselect=False, label="Model provided",
|
||||
info="Choose the model to solve your question, Default means ChatGPT."
|
||||
)
|
||||
with gr.Row():
|
||||
tools_search = gr.Textbox(
|
||||
lines=1,
|
||||
label="Tools Search",
|
||||
placeholder="Please input some text to search tools.",
|
||||
)
|
||||
buttonSearch = gr.Button("Reset search condition")
|
||||
tools_chosen = gr.CheckboxGroup(
|
||||
choices=all_tools_list,
|
||||
value=["chemical-prop"],
|
||||
label="Tools provided",
|
||||
info="Choose the tools to solve your question.",
|
||||
)
|
||||
|
||||
key_set_btn.click(fn=set_environ, inputs=[
|
||||
OPENAI_API_KEY,
|
||||
WOLFRAMALPH_APP_ID,
|
||||
WEATHER_API_KEYS,
|
||||
BING_SUBSCRIPT_KEY,
|
||||
ALPHA_VANTAGE_KEY,
|
||||
BING_MAP_KEY,
|
||||
BAIDU_TRANSLATE_KEY,
|
||||
RAPIDAPI_KEY,
|
||||
SERPER_API_KEY,
|
||||
GPLACES_API_KEY,
|
||||
SCENEX_API_KEY,
|
||||
STEAMSHIP_API_KEY,
|
||||
HUGGINGFACE_API_KEY,
|
||||
AMADEUS_ID,
|
||||
AMADEUS_KEY,
|
||||
], outputs=key_set_btn)
|
||||
key_set_btn.click(fn=load_tools, outputs=tools_chosen)
|
||||
|
||||
tools_search.change(retrieve, tools_search, tools_chosen)
|
||||
buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen])
|
||||
|
||||
txt.submit(lambda: [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [],
|
||||
[txt, buttonClear, buttonStop])
|
||||
inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
|
||||
buttonChat.click(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
|
||||
buttonStop.click(lambda: [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop],
|
||||
cancels=[inference_event])
|
||||
buttonClear.click(clear_history, [], chatbot)
|
||||
|
||||
# demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
|
||||
demo.queue().launch()
|
@ -1,185 +0,0 @@
|
||||
import gradio as gr
|
||||
from swarms.tools.tools_controller import MTQuestionAnswerer, load_valid_tools
|
||||
from swarms.tools.singletool import STQuestionAnswerer
|
||||
from langchain.schema import AgentFinish
|
||||
import os
|
||||
import requests
|
||||
|
||||
available_models = ["ChatGPT", "GPT-3.5"]
|
||||
DEFAULTMODEL = "ChatGPT" # "GPT-3.5"
|
||||
|
||||
tools_mappings = {
|
||||
"klarna": "https://www.klarna.com/",
|
||||
"weather": "http://127.0.0.1:8079/tools/weather/",
|
||||
# "database": "http://127.0.0.1:8079/tools/database/",
|
||||
# "db_diag": "http://127.0.0.1:8079/tools/db_diag/",
|
||||
"chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
|
||||
"douban-film": "http://127.0.0.1:8079/tools/douban-film/",
|
||||
"wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
|
||||
# "wikidata": "http://127.0.0.1:8079/tools/wikidata/",
|
||||
"wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
|
||||
"bing_search": "http://127.0.0.1:8079/tools/bing_search/",
|
||||
"office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
|
||||
"stock": "http://127.0.0.1:8079/tools/stock/",
|
||||
"bing_map": "http://127.0.0.1:8079/tools/bing_map/",
|
||||
# "baidu_map": "http://127.0.0.1:8079/tools/baidu_map/",
|
||||
"zillow": "http://127.0.0.1:8079/tools/zillow/",
|
||||
"airbnb": "http://127.0.0.1:8079/tools/airbnb/",
|
||||
"job_search": "http://127.0.0.1:8079/tools/job_search/",
|
||||
# "baidu-translation": "http://127.0.0.1:8079/tools/baidu-translation/",
|
||||
# "nllb-translation": "http://127.0.0.1:8079/tools/nllb-translation/",
|
||||
"tutorial": "http://127.0.0.1:8079/tools/tutorial/",
|
||||
"file_operation": "http://127.0.0.1:8079/tools/file_operation/",
|
||||
"meta_analysis": "http://127.0.0.1:8079/tools/meta_analysis/",
|
||||
"code_interpreter": "http://127.0.0.1:8079/tools/code_interpreter/",
|
||||
"arxiv": "http://127.0.0.1:8079/tools/arxiv/",
|
||||
"google_places": "http://127.0.0.1:8079/tools/google_places/",
|
||||
"google_serper": "http://127.0.0.1:8079/tools/google_serper/",
|
||||
"google_scholar": "http://127.0.0.1:8079/tools/google_scholar/",
|
||||
"python": "http://127.0.0.1:8079/tools/python/",
|
||||
"sceneXplain": "http://127.0.0.1:8079/tools/sceneXplain/",
|
||||
"shell": "http://127.0.0.1:8079/tools/shell/",
|
||||
"image_generation": "http://127.0.0.1:8079/tools/image_generation/",
|
||||
"hugging_tools": "http://127.0.0.1:8079/tools/hugging_tools/",
|
||||
"gradio_tools": "http://127.0.0.1:8079/tools/gradio_tools/",
|
||||
}
|
||||
|
||||
valid_tools_info = load_valid_tools(tools_mappings)
|
||||
print(valid_tools_info)
|
||||
all_tools_list = sorted(list(valid_tools_info.keys()))
|
||||
|
||||
gr.close_all()
|
||||
|
||||
MAX_TURNS = 30
|
||||
MAX_BOXES = MAX_TURNS * 2
|
||||
|
||||
return_msg = []
|
||||
chat_history = ""
|
||||
|
||||
def show_avatar_imgs(tools_chosen):
|
||||
if len(tools_chosen) == 0:
|
||||
tools_chosen = list(valid_tools_info.keys())
|
||||
img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
|
||||
imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
|
||||
imgs = ' '.join([img_template.format(img, img, tool ) for img, tool in zip(imgs, tools_chosen) ])
|
||||
return [gr.update(value='<span class="">'+imgs+'</span>', visible=True), gr.update(visible=True)]
|
||||
|
||||
def answer_by_tools(question, tools_chosen, model_chosen):
|
||||
global return_msg
|
||||
return_msg += [(question, None), (None, '...')]
|
||||
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
|
||||
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
|
||||
|
||||
if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
|
||||
tools_chosen = list(valid_tools_info.keys())
|
||||
|
||||
if len(tools_chosen) == 1:
|
||||
answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
|
||||
agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]], prompt_type="react-with-tool-description", return_intermediate_steps=True)
|
||||
else:
|
||||
answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(), load_valid_tools({k: tools_mappings[k] for k in tools_chosen}), stream_output=True, llm=model_chosen)
|
||||
|
||||
agent_executor = answerer.build_runner()
|
||||
|
||||
global chat_history
|
||||
chat_history += "Question: " + question + "\n"
|
||||
print(chat_history)
|
||||
question = chat_history
|
||||
for inter in agent_executor(question):
|
||||
if isinstance(inter, AgentFinish): continue
|
||||
result_str = []
|
||||
return_msg.pop()
|
||||
if isinstance(inter, dict):
|
||||
result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
|
||||
chat_history += "Answer:" + inter['output'] + "\n"
|
||||
result_str.append("...")
|
||||
else:
|
||||
not_observation = inter[0].log
|
||||
if not not_observation.startswith('Thought:'):
|
||||
not_observation = "Thought: " + not_observation
|
||||
chat_history += not_observation
|
||||
not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
|
||||
not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
|
||||
not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
|
||||
result_str.append("{}".format(not_observation))
|
||||
result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
|
||||
chat_history += "\nAction output:" + inter[1] + "\n"
|
||||
result_str.append("...")
|
||||
return_msg += [(None, result) for result in result_str]
|
||||
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
|
||||
return_msg.pop()
|
||||
if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
|
||||
return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ", "<font color=green>Final Answer:</font> "))
|
||||
yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
|
||||
|
||||
def retrieve(tools_search):
|
||||
if tools_search == "":
|
||||
return gr.update(choices=all_tools_list)
|
||||
else:
|
||||
url = "http://127.0.0.1:8079/retrieve"
|
||||
param = {
|
||||
"query": tools_search
|
||||
}
|
||||
response = requests.post(url, json=param)
|
||||
result = response.json()
|
||||
retrieved_tools = result["tools"]
|
||||
return gr.update(choices=retrieved_tools)
|
||||
|
||||
def clear_retrieve():
|
||||
return [gr.update(value=""), gr.update(choices=all_tools_list)]
|
||||
|
||||
def clear_history():
|
||||
global return_msg
|
||||
global chat_history
|
||||
return_msg = []
|
||||
chat_history = ""
|
||||
yield gr.update(visible=True, value=return_msg)
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
with gr.Row():
|
||||
with gr.Column(scale=14):
|
||||
gr.Markdown("<h1 align='left'> Swarm Tools </h1>")
|
||||
with gr.Column(scale=1):
|
||||
gr.Image('images/swarmslogobanner.png', show_download_button=False, show_label=False )
|
||||
# gr.Markdown('<img src="../../images/swarmslogobanner.png" alt="swarms">')
|
||||
with gr.Row():
|
||||
with gr.Column(scale=4):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=0.85):
|
||||
txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.", lines=1).style(container=False)
|
||||
with gr.Column(scale=0.15, min_width=0):
|
||||
buttonChat = gr.Button("Chat")
|
||||
|
||||
chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)
|
||||
buttonClear = gr.Button("Clear History")
|
||||
buttonStop = gr.Button("Stop", visible=False)
|
||||
|
||||
with gr.Column(scale=1):
|
||||
model_chosen = gr.Dropdown(
|
||||
list(available_models), value=DEFAULTMODEL, multiselect=False, label="Model provided",
|
||||
info="Choose the model to solve your question, Default means ChatGPT."
|
||||
)
|
||||
with gr.Row():
|
||||
tools_search = gr.Textbox(
|
||||
lines=1,
|
||||
label="Tools Search",
|
||||
placeholder="Please input some text to search tools.",
|
||||
)
|
||||
buttonSearch = gr.Button("Reset search condition")
|
||||
tools_chosen = gr.CheckboxGroup(
|
||||
choices=all_tools_list,
|
||||
value=["chemical-prop"],
|
||||
label="Tools provided",
|
||||
info="Choose the tools to solve your question.",
|
||||
)
|
||||
|
||||
tools_search.change(retrieve, tools_search, tools_chosen)
|
||||
buttonSearch.click(clear_retrieve, [], [tools_search, tools_chosen])
|
||||
|
||||
txt.submit(lambda : [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [], [txt, buttonClear, buttonStop])
|
||||
inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
|
||||
buttonChat.click(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
|
||||
buttonStop.click(lambda : [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop], cancels=[inference_event])
|
||||
buttonClear.click(clear_history, [], chatbot)
|
||||
|
||||
demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
|
Loading…
Reference in new issue