import os from dotenv import load_dotenv from swarm_models import OpenAIChat from swarms import Agent, GroupChat, expertise_based if __name__ == "__main__": load_dotenv() # Get the OpenAI API key from the environment variable api_key = os.getenv("GROQ_API_KEY") # Model model = OpenAIChat( openai_api_base="https://api.groq.com/openai/v1", openai_api_key=api_key, model_name="llama-3.1-70b-versatile", temperature=0.1, ) # Example agents agent1 = Agent( agent_name="Crypto-Tax-Optimization-Agent", system_prompt="You are a friendly tax expert specializing in cryptocurrency investments. Provide approachable insights on optimizing tax savings for crypto transactions.", llm=model, max_loops=1, dynamic_temperature_enabled=True, user_name="User", output_type="string", streaming_on=True, ) agent2 = Agent( agent_name="Crypto-Investment-Strategies-Agent", system_prompt="You are a conversational financial analyst focused on cryptocurrency investments. Offer debatable advice on investment strategies that minimize tax liabilities.", llm=model, max_loops=1, dynamic_temperature_enabled=True, user_name="User", output_type="string", streaming_on=True, ) agents = [agent1, agent2] chat = GroupChat( name="Crypto Tax Optimization Debate", description="Debate on optimizing tax savings for cryptocurrency transactions and investments", agents=agents, speaker_fn=expertise_based, ) history = chat.run( "How can one optimize tax savings for cryptocurrency transactions and investments? I bought some Bitcoin and Ethereum last year and want to minimize my tax liabilities this year." ) print(history.model_dump_json(indent=2))