from unittest.mock import patch

import pytest
import torch

from swarms.models.huggingface import (
    HuggingfaceLLM,  # Replace with the actual import path
)


# Fixture for the class instance
@pytest.fixture
def llm_instance():
    model_id = "NousResearch/Nous-Hermes-2-Vision-Alpha"
    instance = HuggingfaceLLM(model_id=model_id)
    return instance


# Test for instantiation and attributes
def test_llm_initialization(llm_instance):
    assert llm_instance.model_id == "NousResearch/Nous-Hermes-2-Vision-Alpha"
    assert llm_instance.max_length == 500
    # ... add more assertions for all default attributes


# Parameterized test for setting devices
@pytest.mark.parametrize("device", ["cpu", "cuda"])
def test_llm_set_device(llm_instance, device):
    llm_instance.set_device(device)
    assert llm_instance.device == device


# Test exception during initialization with a bad model_id
def test_llm_bad_model_initialization():
    with pytest.raises(Exception):
        HuggingfaceLLM(model_id="unknown-model")


# Mocking the tokenizer and model to test run method
@patch("swarms.models.huggingface.AutoTokenizer.from_pretrained")
@patch(
    "swarms.models.huggingface.AutoModelForCausalLM.from_pretrained"
)
def test_llm_run(mock_model, mock_tokenizer, llm_instance):
    mock_model.return_value.generate.return_value = "mocked output"
    mock_tokenizer.return_value.encode.return_value = "mocked input"
    result = llm_instance.run("test task")
    assert result == "mocked output"


# Async test (requires pytest-asyncio plugin)
@pytest.mark.asyncio
async def test_llm_run_async(llm_instance):
    result = await llm_instance.run_async("test task")
    assert isinstance(result, str)


# Test for checking GPU availability
def test_llm_gpu_availability(llm_instance):
    # Assuming the test is running on a machine where the GPU availability is known
    expected_result = torch.cuda.is_available()
    assert llm_instance.gpu_available() == expected_result


# Test for memory consumption reporting
def test_llm_memory_consumption(llm_instance):
    # Mocking torch.cuda functions for consistent results
    with patch("torch.cuda.memory_allocated", return_value=1024):
        with patch("torch.cuda.memory_reserved", return_value=2048):
            memory = llm_instance.memory_consumption()
    assert memory == {"allocated": 1024, "reserved": 2048}


# Test different initialization parameters
@pytest.mark.parametrize(
    "model_id, max_length",
    [
        ("NousResearch/Nous-Hermes-2-Vision-Alpha", 100),
        ("microsoft/Orca-2-13b", 200),
        ("berkeley-nest/Starling-LM-7B-alpha", None),  # None to check default behavior
    ],
)
def test_llm_initialization_params(model_id, max_length):
    if max_length:
        instance = HuggingfaceLLM(
            model_id=model_id, max_length=max_length
        )
        assert instance.max_length == max_length
    else:
        instance = HuggingfaceLLM(model_id=model_id)
        assert (
            instance.max_length == 500
        )  # Assuming 500 is the default max_length


# Test for setting an invalid device
def test_llm_set_invalid_device(llm_instance):
    with pytest.raises(ValueError):
        llm_instance.set_device("quantum_processor")



# Mocking external API call to test run method without network
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_without_network(mock_run, llm_instance):
    mock_run.return_value = "mocked output"
    result = llm_instance.run("test task without network")
    assert result == "mocked output"


# Test handling of empty input for the run method
def test_llm_run_empty_input(llm_instance):
    with pytest.raises(ValueError):
        llm_instance.run("")


# Test the generation with a provided seed for reproducibility
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_with_seed(mock_run, llm_instance):
    seed = 42
    llm_instance.set_seed(seed)
    # Assuming set_seed method affects the randomness in the model
    # You would typically ensure that setting the seed gives reproducible results
    mock_run.return_value = "mocked deterministic output"
    result = llm_instance.run("test task", seed=seed)
    assert result == "mocked deterministic output"


# Test the output length is as expected
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_output_length(mock_run, llm_instance):
    input_text = "test task"
    llm_instance.max_length = 50  # set a max_length for the output
    mock_run.return_value = "mocked output" * 10  # some long text
    result = llm_instance.run(input_text)
    assert len(result.split()) <= llm_instance.max_length


# Test the tokenizer handling special tokens correctly
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.encode")
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.decode")
def test_llm_tokenizer_special_tokens(
    mock_decode, mock_encode, llm_instance
):
    mock_encode.return_value = "encoded input with special tokens"
    mock_decode.return_value = "decoded output with special tokens"
    result = llm_instance.run("test task with special tokens")
    mock_encode.assert_called_once()
    mock_decode.assert_called_once()
    assert "special tokens" in result


# Test for correct handling of timeouts
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_timeout_handling(mock_run, llm_instance):
    mock_run.side_effect = TimeoutError
    with pytest.raises(TimeoutError):
        llm_instance.run("test task with timeout")


# Test for response time within a threshold (performance test)
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_response_time(mock_run, llm_instance):
    import time

    mock_run.return_value = "mocked output"
    start_time = time.time()
    llm_instance.run("test task for response time")
    end_time = time.time()
    assert (
        end_time - start_time < 1
    )  # Assuming the response should be faster than 1 second


# Test the logging of a warning for long inputs
@patch("swarms.models.huggingface.logging.warning")
def test_llm_long_input_warning(mock_warning, llm_instance):
    long_input = "x" * 10000  # input longer than the typical limit
    llm_instance.run(long_input)
    mock_warning.assert_called_once()


# Test for run method behavior when model raises an exception
@patch(
    "swarms.models.huggingface.HuggingfaceLLM._model.generate",
    side_effect=RuntimeError,
)
def test_llm_run_model_exception(mock_generate, llm_instance):
    with pytest.raises(RuntimeError):
        llm_instance.run("test task when model fails")


# Test the behavior when GPU is forced but not available
@patch("torch.cuda.is_available", return_value=False)
def test_llm_force_gpu_when_unavailable(
    mock_is_available, llm_instance
):
    with pytest.raises(EnvironmentError):
        llm_instance.set_device(
            "cuda"
        )  # Attempt to set CUDA when it's not available


# Test for proper cleanup after model use (releasing resources)
@patch("swarms.models.huggingface.HuggingfaceLLM._model")
def test_llm_cleanup(mock_model, mock_tokenizer, llm_instance):
    llm_instance.cleanup()
    # Assuming cleanup method is meant to free resources
    mock_model.delete.assert_called_once()
    mock_tokenizer.delete.assert_called_once()





# Test model's ability to handle multilingual input
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_multilingual_input(mock_run, llm_instance):
    mock_run.return_value = "mocked multilingual output"
    multilingual_input = "Bonjour, ceci est un test multilingue."
    result = llm_instance.run(multilingual_input)
    assert isinstance(
        result, str
    )  # Simple check to ensure output is string type


# Test caching mechanism to prevent re-running the same inputs
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_caching_mechanism(mock_run, llm_instance):
    input_text = "test caching mechanism"
    mock_run.return_value = "cached output"
    # Run the input twice
    first_run_result = llm_instance.run(input_text)
    second_run_result = llm_instance.run(input_text)
    mock_run.assert_called_once()  # Should only be called once due to caching
    assert first_run_result == second_run_result



# These tests are provided as examples. In real-world scenarios, you will need to adapt these tests to the actual logic of your `HuggingfaceLLM` class.
# For instance, "mock_model.delete.assert_called_once()" and similar lines are based on hypothetical methods and behaviors that you need to replace with actual implementations.