# Importing necessary modules import os from dotenv import load_dotenv from swarms import Agent, OpenAIChat from playground.memory.chroma_db import ChromaDB from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT from swarms import tool # Loading environment variables from .env file load_dotenv() # Getting the Gemini API key from environment variables gemini_api_key = os.getenv("GEMINI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY") llm = OpenAIChat( openai_api_key=openai_api_key, max_tokens=1000, temperature=0.2, ) # Making an instance of the ChromaDB class memory = ChromaDB( metric="cosine", n_results=3, multimodal=True, # docs_folder="images", output_dir="results", ) # Defining tool by creating a function and wrapping it with the @tool decorator and # providing the necessary parameters and docstrings to show the usage of the tool. @tool def make_new_file(file: str, content: str): """ Make a new file. This function creates a new file with the given name. Parameters: file (str): The name of the file to be created. Returns: dict: A dictionary containing the status of the operation. """ with open(file, "w") as f: f.write(f"{content}") # Initializing the agent with the Gemini instance and other parameters agent = Agent( llm=llm, agent_name="Multi-Modal RAG Agent", agent_description=( "This agent fuses together the capabilities of Gemini and" " Visual Chain of Thought to answer questions based on the" " input image." ), max_loops="auto", autosave=True, sop=VISUAL_CHAIN_OF_THOUGHT, verbose=True, # tools=[make_new_file], long_term_memory=memory, ) # Defining the task and image path task = ( "What is the content of this image, return exactly what you see" " in the image." ) img = "images/Screenshot_48.png" # Running the agent with the specified task and image out = agent.run(task=task, img=img) print(out)